• Title/Summary/Keyword: Metal Laminate

Search Result 80, Processing Time 0.024 seconds

A study of manufacture of IPMC actuator and the high molecule finite element analysis. (IPMC 구동기의 제작 및 고분자 해석기법에 관한 연구)

  • Kim, Se-Hun;Cho, Seok-Min;Lee, Dong-Weon;Park, Young-Chul;Kang, Joung-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.4
    • /
    • pp.24-30
    • /
    • 2008
  • The laminate IPMC actuator have been developed with a commercial Nafion film and platinum electrodes. Equivalent beam and equivalent bimorph beam models for IPMC(Ionic Polymer-Metal Composite) actuators are described. By using a beam equation with estimated physical properities and actuation displacements of a cantilevered IPMC actuator are estimated. And Finite element analysis(FEA) was done by ANSYS.

  • PDF

Considerations in Porcelain Fused Metal Restorations (Porcelain 제작시 고려 사항)

  • Kim, Jin-Wan
    • Journal of the Korean Academy of Esthetic Dentistry
    • /
    • v.8 no.1
    • /
    • pp.90-95
    • /
    • 1999
  • Although various kinds of porcelain restorations, including full porcelain jacked crowns and laminate crowns, are used for Esthetic Dentistry nowadays, the most widely used one so far is porcelain metal restoration. It goes without saying that shade matching in porcelain-metal restoration is much more difficult than in full ceramic veneer restoration because of the metal substructure limitation of the porcelain to metal restoration and then let it go even when shade matching is a little bit unsatisfactory. I think a more satisfactory shade matching can be achieved by developing more elaborate techniques, by selecting proper metal and porcelain and by enabling more detailed communication between the dentists and the dental technicians. Some considerations will be made in an attempt to achieve more successful outputs.

  • PDF

A Study on the Evaluation of Tension-Compression Fatigue Characteristics of Glass Fiber/Epoxy 4-Harness Satin Woven Laminate Composite for the Railway Bogie Application (철도차량 대차 적용 유리섬유/에폭시 4-매 주자직 적층 복합재의 인장-압축 피로특성 평가 연구)

  • Jeon, Kwang-Woo;Shin, Kwang-Bok;Kim, Jung-Seok
    • Composites Research
    • /
    • v.23 no.5
    • /
    • pp.22-29
    • /
    • 2010
  • This paper describes the evaluations of tension-compression fatigue characteristics and life for glass fiber/epoxy laminate composite applied to railway bogie to reduce weight. Test samples of tension-compression fatigue were composed of glass fiber/epoxy 4-harness woven laminate composites with different stacking sequence of warp-direction, fill-direction and ${\pm}45^{\circ}$-direction. The tension-compression fatigue test was conducted with stress ratio (R) of -1 and frequency of 5Hz. Goodman diagram were used to evaluate the fatigue characteristics and life of glass fiber/epoxy 4-harness satin woven laminate composite. Anti-buckling jig was designed to prevent buckling of specimen under compression load. The test results showed that the fatigue characteristics of glass fiber/epoxy 4-harness satin woven laminate composite with stacking sequence of warp-direction had a good performance in comparison with that of SM490 used to conventional metal railway bogie.

Study on the Mechanical Behavior of Fiber Metal Laminates Using Classical Lamination Theory (고전 적층이론에 의한 섬유금속적층판의 기계적 거동 연구)

  • 노희석;최흥섭;강길호;하민수
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.37-41
    • /
    • 2003
  • In this study the mechanical behaviors of fiber metal laminates (FML) such as ARALL, GLARE and CARE which are recently developed as new structural materials and known to have excellent fatigue resistant characteristics while with relatively low densities compared to the conventional aluminum materials, are considered through the classical lamination theory. The mechanical properties such as elastic moduli, thermal expansion coefficients and hygro-thermally induced residual stresses in the fiber metal laminates are obtained and compared each other. Also load carrying mechanism between metal sheets and composite layers in the FML are considered.

  • PDF

Experimental Study on Manufacturing Fiber Metal Laminate using Microwave Heating Based on PTFE Mold (섬유금속적층판 제작을 위한 PTFE 몰드 기반 마이크로파 공정에 대한 실험적 연구)

  • Park, E.T.;Lee, Y.H.;Kim, J.;Kang, B.S.;Song, W.J.
    • Transactions of Materials Processing
    • /
    • v.29 no.4
    • /
    • pp.179-187
    • /
    • 2020
  • Existing composite forming processes such as the autoclave, prepreg compression forming (PCF), RTM, etc. require high production costs because of their long processing time. On the other hand, microwave heating process (MHP) can reduce the production costs since both mold and composite material can be heated directly. The aim of this study is to manufacture a mold consisting of polytetrafluoroethylene (PTFE), quartz glass, stainless steel clamps, and polyether ether ketone (PEEK) bolts for fabricating FML based on self-reinforced polypropylene (SRPP) using the MHP. First, the flame test was carried out prior to the MHP to check the temperature on the mold and whether the spark occurred at the mold and the edge of the FML. Second, the uniaxial tensile test was then conducted to obtain the mechanical properties of the FML manufactured by the MHP. The mechanical properties were compared with those of the FML fabricated by the PCF. As a result, the MHP using the PTFE mold can manufacture the FML more rapidly than the PCF, and obtain acceptable mechanical properties.

A study on strength reinforcement of one-sided reinforced hybrid laminates made of 22MnB5 and carbon fiber reinforced plastics (22MnB5 / 탄소섬유 강화 플라스틱으로 제작된 단면 보강 하이브리드 적층판의 강도 보강에 관한 연구)

  • Lee, Hwan-Ju;Jeon, Young-Jun;Kim, Dong-Earn
    • Design & Manufacturing
    • /
    • v.16 no.2
    • /
    • pp.1-6
    • /
    • 2022
  • As environmental regulations are strengthened, automobile manufacturers continuously research lightweight structures based on carbon fiber reinforced plastic (CFRP). However, it is difficult to see the effect of strength reinforcement when using a single CFRP material. To improve this, a hybrid laminate in which CFRP is mixed with the existing body structural steel was proposed. In this paper, CFRP patch reinforcement is applied to each compression/tensile action surface of a 22MnB5 metal sheet, and it was evaluated through a 3-point bending experiment. Progressive failure was observed in similar deflection on bending deformation to each one-sided reinforced specimen. After progressive failure, the tensile reinforced specimen was confirmed to separate the damaged CFRP patch and 22MnB5 sheet from the center of the flexure. The compression reinforced specimen didn't separate that CFRP patch and 22MnB5, and the strength reinforcement behavior was confirmed. In the compression reinforced specimen, damaged CFRP patches were observed at the center of flexure during bending deformation. As a result of checking the specimen of the compression reinforcement specimen with an optical microscope, It is confirmed that the damaged CFRP patch and the reinforced CFRP patch overlapped, resulting in a concentrated load. Through the experimental results, the 22MnB5 strength reinforcement characteristics according to the reinforcement position of the CFRP patch were confirmed.

Study on the Thermo-Mechanical Behaviors of Fiber Metal Laminates Using the Classical Lamination Theory (고전적층이론을 이용한 섬유금속적층판의 열 . 거동 연구)

  • Choi, Heung-Soap;Roh, Hee-Seok;Kang, Gil-Ho;Ha, Min-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.4
    • /
    • pp.394-401
    • /
    • 2004
  • In this study the mechanical behaviors of fiber metal laminates(FMLs) such as ARALL, GLARE and CARE which are recently developed as new structural materials and known to have excellent fatigue resistant characteristics while with relatively low densities compared to the conventional aluminum materials, are considered through the classical lamination theory. The mechanical properties such as elastic moduli, thermal expansion coefficients and hygro-thermally induced residual stresses in the fiber metal laminates are obtained and compared each other. Also, carpet plots of effective elastic moduli, Poisson's ratio and the thermal expansion coefficient for GLARE FML are plotted.

Variation of Thermal Resistance of LED Module Embedded by Thermal Via (Thermal Via 구조 LED 모듈의 열저항 변화)

  • Shin, Hyeong-Won;Lee, Hyo-Soo;Bang, Jae-Oh;Yoo, Se-Hoon;Jung, Seung-Boo;Kim, Kang-Dong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.4
    • /
    • pp.95-100
    • /
    • 2010
  • LED (Light Emitting Diode) is 85% of the applied energy is converted into heat that is already well known. Lately, LED chips increasing the capacity as result delivered to increase the heat of the LED products and module that directly related to life span and degradation. Thus, in industry the high-power LED chip to control the heat generated during the course of the study and the existing aluminum, copper adhesives, and uses MLC (Metal clad laminate) structures using low-cost FR4 and copper CCL (Copper Clad Laminate) to reduce costs by changing to a study being carried out. In this study, using low-cost CCL Class, mounted 1W LED chip to analyze changes in the thermal resistance. In addition, heat dissipation in the CCL to facilitate a variety of thermal via design outside of the heat generated by the LED chip to control and facilitate the optimal structure of the heat dissipation is suggested.

Damage Detection of Fiber-Metal Laminates Using Optical Fiber Sensors (광섬유 센서를 이용한 섬유-금속 적층판의 손상 감지)

  • 양유창;한경섭
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.161-164
    • /
    • 2002
  • Optical fiber vibrations sensors (OFVSs) and extrinsic Fabry-Perot interferometer (EFPI) were used in damage monitoring of fiber-metal laminates(FML). The optical fiber vibration sensor and EFPI were applied in order to detect and evaluate the strain, damage and failure of FML. Damages in composites, such as matrix cracks, delamination and fiber breakage may occur as a result of excessive load, fatigue and low-velocity impacts. Tensile test was performed with the measurement of optical signal and acoustic emission (AE). The signals of the optical fiber vibration sensor due to damages were quantitatively evaluated by wavelet transform. EFPI was less sensible to the damage signals compared with the optical fiber vibration sensor. It was found that damage information of comparable in quality to acoustic emission data could be obtained from the optical fiber vibration sensor signals.

  • PDF

Damage Detection of Fiber-Metal Laminates Under Axial and Indentation Load (섬유-금속 적층판의 인장 및 압입 하중에서의 손상감지)

  • Yang, Yoo-Chang;Han, Kyung-Seop
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.370-375
    • /
    • 2003
  • Optical fiber vibrations sensors (OFVSs) and extrinsic Fabry-Perot interferometer (EFPI) were used in damage monitoring of fiber-metal laminates(FML). The optical fiber vibration sensor and EFPI were applied in order to detect and evaluate the strain, damage and failure of FML. Damages in composites, such as matrix cracks, delamination and fiber breakage may occur as a result of excessive load, fatigue and low-velocity impacts. Tensile and indentation test was performed with the measurement of optical signal and acoustic emission (AE). The signals of the optical fiber vibration sensor due to damages were quantitatively evaluated by wavelet transform. It was found that damage information of comparable in quality to acoustic emission data could be obtained from the optical fiber vibration sensor signals.

  • PDF