• 제목/요약/키워드: Metal Ions

Search Result 2,099, Processing Time 0.028 seconds

Synthesis of POF Cation Exchange Fibers Using PE Coated PP Matrix by Radiation-Induced Polymerization and Their Adsorption Properties for Heavy Metals (방사선 중합법에 의한 PE 코팅 PP 복합섬유를 이용한 가교 및 비가교 POF 양이온교환 섬유의 합성 및 중금속 흡착)

  • Cho, In-Hee;Baek, Ki-Wan;Lim, Youn-Mook;Nho, Young-Chang;Hwsng, Taek-Sung
    • Polymer(Korea)
    • /
    • v.31 no.3
    • /
    • pp.239-246
    • /
    • 2007
  • The sulfonated ion exchange fibers were synthesized by $Co^{60}\;{\gamma}-ray$ radiation-induced graft copolymerization. Degree of grafting was increased with increasing the total dose. The degree of grafting for POF-g-St/DVB copolymer was 1000%. The ion exchange capacity of sulfonated ion exchange fibers were increased by increasing the degree of sulfonation. Its maximum value was 5.06 meq/g. The ion exchange capacity of sulfonated POF- co-St/DVB ion exchange fiber was higher than that of the sulfonated POF- co-styrene ion exchange fibers. The amount of adsorption for heavy metals were also increased with increase in the degree of grafting of the ion exchange fibers.

Synthesis of Monodisperse Magnetite Nanocrystallites Using Sonochemical Method (음향화학법을 이용한 균일한 나노 자성체의 합성)

  • Cho, Jun-Hee;Ko, Sang-Gil;Ahn, Yang-Kyu;Song, Ki-Chang;Choi, Eun-Jung
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.3
    • /
    • pp.163-167
    • /
    • 2006
  • Ultrasonic irradiation in a solution during the chemical reaction may accelerate the rate of the reaction and the crystallization at low temperature. We have synthesized nanometer sized magnetite particles using coprecipitation method, sonochemical method without surfactant, and sonochemical method with surfactant, in order to investigate the effect of ultrasonic irradiation and surfactant on the coprecipitates of metal ions. The size of the magnetite nanoparticles prepared by coprecipitation method, and sonochemical method without surfactant showed broad distributions. But we got uniform nanoparticles using a sonochemical method with oleic acid. The average size of the particles can be controlled by the ratio $R=[H_2O]/[surfactant]$. The size of the magnetite nanoparticles prepared by this method showed narrow distributions. We have characterized the nanoparticles using an X-ray diffraction (XRD), a superconducting quantum interference device (SQUID), and atomic force microscope (AFM). The size and distribution of the magnetite nanoparticles were measured by dynamic light scattering (DLS) method.

Yeast Cell Wall Lytic Enzyme Produced by Dicyma sp. YCH-37 II. Effect of Culture Conditions and Pretreatment of Yeast on the Enzyme Activity (Dicyma sp. YCH-37이 생산하는 효모세포벽 용해효소 II. 효소활성에 미치는 기질 효모의 배양조건 및 전처리 효과)

  • Chung, Hee-Chul;Hahm, Byoung-Kwon;Yu, Ju-Hyun;Bai, Dong-Hoon
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.5
    • /
    • pp.1021-1027
    • /
    • 1997
  • We examined some properties of yeast cell wall lytic enzyme produced by Dicyma sp. YCH-37. Several metal ions, reducing reagents, and chemical modifiers have little effects on the lytic activity, except guanidine-HCl. Yeast cells of early log phase were more susceptible to the enzyme than those of stationary phase, and heat-treated cells were more easily lysed than intact living ones. Yeast cells pretreated with organic solvents such as butanol and acetone were more susceptible to the enzyme than intact living ones. Yeast cells cultured in Yeast extract-Malt extract medium containing 0.5 M ammonium sulfate were easily lysed by the lytic enzyme, and yeast cells cultured without shaking were more easily lysed by the enzyme than those with shaking. When SDS, ${\beta}-mercaptoethanol$, Triton X-100, sodium sulfite, and KCl were added to enzyme reaction mixture each, lysis of yeast cells was more effective.

  • PDF

Antimutagenic effects of browning products reacted with polyphenol oxidase extracted from peach (복숭아 효소 갈변반응 생성물의 돌연변이원성 억제효과)

  • Ham, Seung-Shi;Choi, Kyeong-Kun
    • Applied Biological Chemistry
    • /
    • v.35 no.2
    • /
    • pp.82-86
    • /
    • 1992
  • This research was carried out to investigate antimutagent effect of peach enzymatic browning reaction products(PEBRP) obtained by reacting each of polyphenol compounds with oxidase extracted from Korea-cultivated peach. In methods, rec-assay with B. subtilis strains $H17(rec^+)\;and\;M45(rec^-)$, and Ames test with S. typhimurium TA98 and TA100 were used. The spore rec-assay of PEBRP, pyrogallol, hydroxyhydroquinone, homocatechol and caffeic acid were not showed mutagenicity. In the effects of various metal ions$(Al^{3+},\;Cu^{2+},\;Fe^{2+},\;Mn^{2+},\;Ni^{2+},\;Pb^{2+},\;Zn^{2+})$ on the rec-assay, all PEBRP except caffeic acid was increased inhibition zone(5 mm) only with $Zn^{2+}$. In paticular, the Py-PEBRP was decreased the difference of inhibition zone of growth on MMC(mitomycin C). In results of Ames test, all PEBRP were not showed mutagenicity on S. typhimurium TA98 and TA100; however, Ca-PEBRP and Hca-PEBRP were suppressed mutagenic effects on Trp-P-1 and B(a)P in the presence of S-9Mix.

  • PDF

Production of $poly-{\beta}-hydroxybutyric$ acid by methanol assimilating bacterium, Pseudomonas sp. ILS-003 (Methanol 자화성 세균 Pseudomonas sp. ILS-003에 의한 $poly-{\beta}-hydroxybutyric$ acid의 생산)

  • Lee, Il-Seok;Bang, Won-Gi
    • Applied Biological Chemistry
    • /
    • v.34 no.3
    • /
    • pp.273-278
    • /
    • 1991
  • Methanol assimilating bacterium, Pseudomonas sp. ILS-003 was used to investigate the optimum conditions for the production of $poly-{\beta}-hydroxybutyric$ acid from methanol. For PHB production, the optimum initial pH was 6.4 and the optimum temperature was $30^{\circ}C$. Also the optimum methanol concentration was found to be 1.0%(v/v). In the PHB production, $(NH_4)_2SO_4$ was the most effective nitrogen source and the optimum concentration was 0.8 g/l, which was eqivalent to 17.4 in C/N ratio. Also, deficiency of the 2 valence metal ions in the medium had stimulating effect on PHB accumulation. Under the optimum substrate concentration, successive feeding of 0.25%(v/v) methanol was the most effective on PHB production. Under the optimum conditions, 1.94 g/l of PHB and 2.78 g/l of dry biomass were produced in 96 hours, and the yield was 69.8%(w/w).

  • PDF

Production, Purification and Characterization of $\beta$-Galactosidase from Bifidobaacterium longurn KCTC 3 2 15 (Bifidobacterium longum KCTC 3215에 의한 $\beta$-Galactosidase의 생산. 정제 및 특성)

  • 강국희;민해기;장영효;이호근
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.5
    • /
    • pp.456-463
    • /
    • 1991
  • $\beta$-Galactosidase of Bifidobacterium longum KCTC 3215 was studied on the production, purification, and characterization. Optimum conditions for the enzyme production were in the medium of 1.0% lactose as carbon source, initial pH 7.0 and in 17 hours of cultivation at $37^{\circ}C$. The enzyme was purified 9.25 folds by protamine sulfate precipitation, ammonium sulfate fractionation, DEAE-Sephadex A-50 ion exchange chromatography and Sephadex G-150 gel filtration. The maximal P-galactosidase activity was observed at pH 6.5 and at the temperature of $40^{\circ}C$ This enzyme was stable at pH 6.0-8.5. Metal ions such as $Ca^{2+} \;and \; Co^{2+}$, 2-mercaptoethanol, cysteine, and glutathione stimulated B-galactosidase activity. The enzyme activity was inhibited by addition of $Mg^{2+}, Fe^{2+}, Cs^{1+}, Li^{1+}$, DETA, galactose, and $\rho$-chloromercuribenzoic acid. The kinetics of o-nitrophenyl-$\beta$-D-galactopyranoside and lactose were $K_m$ = 1.66 mM, $V_{max}= 0.30 mM/min\cdot mg\cdot protein$ and $KK_m = 3.18 mM, \; V_{max}= 0.42 mM/min \cdot mg\cdot$ protein, respectively. The molecular weight of native enzyme was about 360, 000 dalton and the enzyme consisted of 2 identical subunits with a molecular weight of 180, 000.

  • PDF

Heterologous Expression and Characterization of a Thermostable Exo-β-D-Glucosaminidase from Aspergillus oryzae

  • Wu, Dingxin;Wang, Linchun;Li, Yuwei;Zhao, Shumiao;Peng, Nan;Liang, Yunxiang
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.2
    • /
    • pp.347-355
    • /
    • 2016
  • An exo-β-D-glucosaminidase (AorCsxA) from Aspergillus oryzae FL402 was heterologously expressed and purified. The deduced amino acid sequence indicated that AorCsxA belonged to glycoside hydrolase family 2. AorCsxA digested colloid chitosan into glucosamine but not into chitosan oligosaccharides, demonstrating exo-β-D-glucosaminidase (CsxA) activity. AorCsxA exhibited optimal activity at pH 5.5 and 50℃; however, the enzyme expressed in Pichia pastoris (PpAorCsxA) showed much stronger thermostability at 50℃ than that expressed in Escherichia coli (EcAorCsxA), which may be related to glycosylation. AorCsxA activity was inhibited by EDTA and most of the tested metal ions. A single amino acid mutation (F769W) in AorCsxA significantly enhanced the specific activity and hydrolysis velocity as revealed by comparison of Vmax and kcat values with those of the wild-type enzyme. The three-dimensional structure suggested the tightened pocket at the active site of F769W enabled efficient substrate binding. The AorCsxA gene was heterologously expressed in P. pastoris, and one transformant was found to produce 222 U/ml activity during the high-cell-density fermentation. This AorCsxA-overexpressing P. pastoris strain is feasible for large-scale production of AorCsxA.

Characteristics of a Novel Acinetobacter sp. and Its Kinetics in Hexavalent Chromium Bioreduction

  • M., Narayani;K., Vidya Shetty
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.5
    • /
    • pp.690-698
    • /
    • 2012
  • Cr-B2, a Gram-negative hexavalent chromium [Cr(VI)] reducing bacteria, was isolated from the aerator water of an activated sludge process in the wastewater treatment facility of a dye and pigment based chemical industry. Cr-B2 exhibited a resistance for 1,100 mg/l Cr(VI) and, similarly, resistance against other heavy metal ions such as $Ni^{2+}$ (800 mg/l), $Cu^{2+}$ (600 mg/l), $Pb^{2+}$ (1,100 mg/l), $Cd^{2+}$ (350 mg/l), $ZN^{2+}$ (700 mg/l), and $Fe^{3+}$ (1,000 mg/l), and against selected antibiotics. Cr-B2 was observed to efficiently reduce 200 mg/l Cr(VI) completely in both nutrient and LB media, and could convert Cr(VI) to Cr(III) aerobically. Cr(VI) reduction kinetics followed allosteric enzyme kinetics. The $K_m$ values were found to be 43.11 mg/l for nutrient media and 38.05 mg/l for LB media. $V_{max}$ values of 13.17 mg/l/h and 12.53 mg/l/h were obtained for nutrient media and LB media, respectively, and the cooperativity coefficients (n) were found to be 8.47 and 3.49, respectively, indicating positive cooperativity in both cases. SEM analysis showed the formation of wrinkles and depressions in the cells when exposed to 800 mg/l Cr(VI) concentration. The organism was seen to exhibit pleomorphic behavior. Cr-B2 was identified on the basis of morphological, biochemical, and partial 16S rRNA gene sequencing chracterizations and found to be Acinetobacter sp.

Overexpression of aprE2, a Fibrinolytic Enzyme Gene from Bacillus subtilis CH3-5, in Escherichia coli and the Properties of AprE2

  • Jeong, Seon-Ju;Cho, Kye Man;Lee, Chang Kwon;Kim, Gyoung Min;Shin, Jung-Hye;Kim, Jong Sang;Kim, Jeong Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.7
    • /
    • pp.969-978
    • /
    • 2014
  • The aprE2 gene with its prosequence from Bacillus subtilis CH3-5 was overexpressed in Escherichia coli BL21(DE3) by using plasmid pET26b(+). After IPTG induction, active and mature AprE2 was produced when cells were grown at $20^{\circ}C$, whereas inactive and insoluble enzyme was produced in a large amount when cells were grown at $37^{\circ}C$. The insoluble fraction was resuspended with 6 M guanidine-HCl and dialyzed against 2 M Tris-HCl (pH 7.0) or 0.5 M sodium acetate (pH 7.0) buffer. Then active AprE2 was regenerated and purified by a Ni-NTA column. Purified AprE2 from the soluble fraction had a specific activity of $1,069.4{\pm}42.4U/mg$ protein, higher than that from the renatured insoluble fraction. However, more active AprE2 was obtained by renaturation of the insoluble fraction. AprE2 was most stable at pH 7 and $40^{\circ}C$, respectively. The fibrinolytic activity of AprE2 was inhibited by PMSF, but not by EDTA and metal ions. AprE2 degraded $A{\alpha}$ and $B{\beta}$ chains of fibrinogen quickly, but not the ${\gamma}$-chain. AprE2 exhibited the highest specificity for N-succinyl-Ala-Ala-Pro-Phe-pNA. The $K_m$ and $k_{cat}/K_m$ of AprE2 was 0.56 mM and $3.10{\times}10^4S^{-1}M^{-1}$, respectively.

Study of the Production of Alkaline Keratinases in Submerged Cultures as an Alternative for Solid Waste Treatment Generated in Leather Technology

  • Cavello, Ivana A.;Chesini, Mariana;Hours, Roque A.;Cavalitto, Sebastian F.
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.7
    • /
    • pp.1004-1014
    • /
    • 2013
  • Six nonpathogenic fungal strains isolated from alkaline soils of Buenos Aires Province, Argentina (Acremonium murorum, Aspergillus sidowii, Cladosporium cladosporoides, Neurospora tetrasperma, Purpureocillium lilacinum (formerly Paecilomyces lilacinus), and Westerdikella dispersa) were tested for their ability to produce keratinolytic enzymes. Strains were grown on feather meal agar as well as in solid-state and submerged cultures, using a basal mineral medium and "hair waste" as sole sources of carbon and nitrogen. All the tested fungi grew on feather meal agar, but only three of them were capable of hydrolyzing keratin, producing clear zones. Among these strains, P. lilacinum produced the highest proteolytic and keratinolytic activities, both in solid-state and submerged fermentations. The medium composition and culture conditions for the keratinases production by P. lilacinum were optimized. Addition of glucose (5 g/l) and yeast extract (2.23 g/l) to the basal hair medium increased keratinases production. The optimum temperature and initial pH for the enzyme production were $28^{\circ}C$ and 6.0, respectively. A beneficial effect was observed when the original concentration of four metal ions, present in the basal mineral medium, was reduced up to 1:10. The maximum yield of the enzyme was 15.96 $U_c/ml$ in the optimal hair medium; this value was about 6.5-fold higher than the yield in the basal hair medium. These results suggest that keratinases from P. lilacinum can be useful for biotechnological purposes such as biodegradation (or bioconversion) of hair waste, leading to a reduction of the environmental pollution caused by leather technology with the concomitant production of proteolytic enzymes and protein hydrolyzates.