Browse > Article
http://dx.doi.org/10.4014/jmb.1110.10073

Characteristics of a Novel Acinetobacter sp. and Its Kinetics in Hexavalent Chromium Bioreduction  

M., Narayani (National Institute of Technology Karnataka)
K., Vidya Shetty (National Institute of Technology Karnataka)
Publication Information
Journal of Microbiology and Biotechnology / v.22, no.5, 2012 , pp. 690-698 More about this Journal
Abstract
Cr-B2, a Gram-negative hexavalent chromium [Cr(VI)] reducing bacteria, was isolated from the aerator water of an activated sludge process in the wastewater treatment facility of a dye and pigment based chemical industry. Cr-B2 exhibited a resistance for 1,100 mg/l Cr(VI) and, similarly, resistance against other heavy metal ions such as $Ni^{2+}$ (800 mg/l), $Cu^{2+}$ (600 mg/l), $Pb^{2+}$ (1,100 mg/l), $Cd^{2+}$ (350 mg/l), $ZN^{2+}$ (700 mg/l), and $Fe^{3+}$ (1,000 mg/l), and against selected antibiotics. Cr-B2 was observed to efficiently reduce 200 mg/l Cr(VI) completely in both nutrient and LB media, and could convert Cr(VI) to Cr(III) aerobically. Cr(VI) reduction kinetics followed allosteric enzyme kinetics. The $K_m$ values were found to be 43.11 mg/l for nutrient media and 38.05 mg/l for LB media. $V_{max}$ values of 13.17 mg/l/h and 12.53 mg/l/h were obtained for nutrient media and LB media, respectively, and the cooperativity coefficients (n) were found to be 8.47 and 3.49, respectively, indicating positive cooperativity in both cases. SEM analysis showed the formation of wrinkles and depressions in the cells when exposed to 800 mg/l Cr(VI) concentration. The organism was seen to exhibit pleomorphic behavior. Cr-B2 was identified on the basis of morphological, biochemical, and partial 16S rRNA gene sequencing chracterizations and found to be Acinetobacter sp.
Keywords
Acinetobacter; bioreduction; kinetics; hexavalent chromium; isolation; pleomorphic behavior;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Masood, F. and A. Malik. 2011. Hexavalent chromium reduction by Bacillus sp. strain FM1 isolated from heavy-metal contaminated soil. Bull. Environ. Contam. Toxicol. 86: 114-119.   DOI   ScienceOn
2 Luli, G. W., J. W. Talnagi, W. R. Strohl, and R. M. Pfister. 1983. Hexavalent chromium-resistant bacteria isolated from river sediments. Appl. Environ. Microbiol. 46: 846-854.
3 McGrath, S. P. and S. Smith. 1990. Chromium and nickel, pp. 125. In B. J. Alloway (ed.). Heavy Metals in Soils. Wiley, New York.
4 Nourbakhsh, M., Y. Sag, D. Ozer, Z. Aksu, T. Kutsal, and A. Calgar. 1994. A comparative study of various biosorbents for removal of chromium (e) ions from industrial wastewater. Process Biochem. 29: 1-5.   DOI   ScienceOn
5 Novick, R. P. and C. Roth. 1968. Plasmid linked resistance to inorganic salts in Staphylococcus aureus. J. Bacteriol. 95: 1335-1342.
6 Pal, A. and A. K. Paul. 2004. Aerobic chromate reduction by chromium-resistant bacteria isolated from serpentine soil. Microbiol. Res. 159: 347-354.   DOI   ScienceOn
7 Pattanapipitpaisal, P., N. L. Brown, and L. E. Macaskie. 2001. Chromate reduction and 16S rRNA identification of bacteria isolated from a Cr(VI)-contaminated site. Appl. Microbiol. Biotechnol. 57: 257-261.   DOI   ScienceOn
8 Pei, Quek, Shahir Shafinaz, Santhana Raj, A. Zakaria Zainul, and Ahmad Wani. 2009. Chromium(VI) resistance and removal by Acinetobacter haemolyticus. World J. Microbiol. Biotechnol. 6: 1085-1093.
9 Petrilli, F. L. and S. De Flora. 1977. Toxicity and mutagenicity of hexavalent chromium on Salmonella Typhimurium. Appl. Environ. Microbiol. 33: 805-809.
10 Puzon, G. J., A. R. Roberts, D. M. Kramer, and L. Xun. 2005. Formation of soluble organo-chromium(III) complexes after chromate reduction in the presence of cellular organics. Environ. Sci. Technol. 39: 2811-2817.   DOI   ScienceOn
11 Ramteke, P. W. 1997. Plasmid mediated co-transfer of antibiotic resistance and heavy metal resistance in coliforms. Indian J. Med. Microbiol. 37: 177-181.
12 Rawlings, D. E. 1995. Restriction enzyme analysis of 16S rRNA genes for the rapid identification of Thiobacillus ferrooxidans, Thiobacillus thiooxidans and Leptospirillum ferrooxidans strains in leaching environments, pp. 9-17. In T. Vargas, C. A. Jerez, J. V. Wiertz, and H. Toledo (eds.). Biohydrometallurgical Processing. 2nd Ed. Chile University.
13 Romanenko, V. I. and V. N. Korenkov. 1977. A pure culture of bacterial cells assimilating chromates and bichromates as hydrogen acceptors when grown under anaerobic conditions. Mikrobiologiya 46: 414-417.
14 Shuler, M. L. and F. Kargi. 2005. Bioprocess Engineering: Basic Concepts, pp. 67-69. 2nd Ed. Prentice Hall of India, New Delhi.
15 Spain, A. 2003. Implications of microbial heavy metal resistance in the environment. Rev. Undergrad. Res. 2: 1-6.
16 Srivastava, S and I. S. Thakur. 2007. Evaluation of biosorption potency of Acinetobacter sp. for removal of hexavalent chromium from tannery effluent. Biodegradation 18: 637-646.   DOI   ScienceOn
17 Rehman, A., A. Zahoor, A. Munner, and A. Hasnain. 2008. Chromium tolerance and reduction potential of a Bacillus sp. env3 isolated from metal contaminated wastewater. Bull. Environ. Contam. Toxicol. 81: 25-29.   DOI   ScienceOn
18 Remoundaki, E., A. Hatzikioseyian, and M. Tsezos. 2007. A systematic study of chromium solubility in the presence of organic matter: Consequences for treatment of chromium-containing waste water. J. Chem. Technol. Biotechnol. 82: 802-808.   DOI   ScienceOn
19 Schottel, L., A. Mandal, D. Clark, S. Silver, and R. W. Hedges. 1974. Volatilization of mercury and organomercurials determined by F factor system in enteric bacilli. Nature 251: 335-337.   DOI   ScienceOn
20 Bergogne-Berezin, E. and K. J. Towner. 1996. Acinetobacter spp. as nosocomial pathogens: Microbiological, clinical, and epidemiological features. Clin. Microbiol. Rev. 9: 148-165.
21 Bolan, N. S., D. C Adriano, R. Natesan, and K. Bon-jun. 2003. Reduction and phytoavailability of Cr(VI) as influenced by organic manure compost. J. Environ. Qual. 32: 120-128.
22 Bopp, L. H. and H. L. Ehrlich. 1988. Chromate resistance and reduction in Pseudomonas fluorescens strain LB300. Arch. Microbiol. 150: 426-431.   DOI   ScienceOn
23 Branco, R., M. C. Alpoim, and P. V. Morais. 2004. Ochrobactrum tritici strain 5bvI1 - characterization of a Cr(VI)-resistant and Cr(VI)-reducing strain. Can. J. Microbiol. 50: 697-703.   DOI   ScienceOn
24 Towner, K. J., E. Bergogne-Berezin, and C. A. Fewson. 1991. The Biology of Acinetobacter: Taxonomy, Clinical Importance, Molecular Biology, Physiology, Industrial Relevance. Plenum Publishing Corp, New York.
25 Suzuki, T., N. Miyata, H. Horitsu, K. Kawai, K. Takamizawa, Y. Tai, et al. 1992. NAD(P) H-dependent chromium(VI) reductase of Pseudomonas ambigua G-1: A Cr(V) intermediate is formed during the reduction of Cr(VI) to Cr(III). J. Bacteriol. 174: 5340-5534.
26 Thacker, U. and D. Madamwar. 2005. Reduction of toxic chromium and partial localization of chromium reductase activity in bacterial isolate DM1. World J. Microbiol. Biotechnol. 21: 891-899.   DOI   ScienceOn
27 Thacker, U., R. Parikh, Y. Shouche, and D. Madamwar. 2007. Reduction of chromate by cell-free extract of Brucella sp. isolated from Cr(VI) contaminated sites. Bioresour. Technol. 98: 1541-1547.   DOI   ScienceOn
28 Wang, P. C., T. Mori, K. Komori, M. Sasatsu, K. Toda, and H. Ohtake. 1989. Isolation and characterization of an Enterobacter cloacae strain that reduces hexavalent chromium under anaerobic conditions. Appl. Environ. Microbiol. 55: 1665-1669.
29 Zakaria, A., Z. Zakaria, S. Surif, and W. A. Ahmad. 2007. Hexavalent chromium reduction by Acinetobacter haemolyticus isolated from heavy-metal contaminated wastewater. J. Hazard. Mater. 146: 30-38.   DOI   ScienceOn
30 Zahoor, A. and A. Rehman. 2009. Isolation of Cr(VI) reducing bacteria from industrial effluents and their potential use in bioremediation of chromium containing wastewater. J. Environ. Sci. 21: 814-820.   DOI   ScienceOn
31 Muyzer, G., E. C. De Waal, and A. G. Uitterlinden. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59: 695-700.
32 Kvasnikov, E. I., T. I. Klyushnikova, T. P. Kasatkinsa, V. V. Stepanyuk, and S. L. Kuberskaya. 1988. Bacteria reducing chromium in nature and in industrial sewage. Mikrobiologiya 57: 680-685.
33 Dhakephalker, P. K. and B. A. Chopade. 1994. High levels of multiple metal resistances and its correlation to antibiotics resistance in environmental isolates of Acinetobacter. Biometals 7: 67-74.
34 Gopalan, R. and H. Veeramani. 1977. Development of a Pseudomonas sp. for aerobic chromate reduction. Biotechnol. Tech. 46: 414-417.
35 Horitsu, H., H. Nishida, H. Kato, and M. Tomoyeda. 1978. Isolation of potassium chromate tolerant bacterium and chromate uptake by the bacterium. Agric. Biol. Chem. 42: 2037-2043.   DOI
36 Lameiras, S., C. Quintelas, and T. Tavares. 2008. Biosorption of Cr(VI) using a bacterial biofilm supported on granular activated carbon and on zeolite. Bioresour. Technol. 99: 801-806.   DOI   ScienceOn
37 Lebedeva, E. V. and N. N. Lyalikova. 1979. Reduction of crocoite by Pseudomonas chromatophila species nova. Mikrobiologiya 48: 517-522.
38 Abboud, R., R. Popa, V. Souza-Egipsy, C. S. Giometti, S. Tollaksen, J. J. Mosher, et al. 2005. Low temperature growth of Shewanella oneidensis MR-1. Appl. Environ. Microbiol. 71: 811-816.   DOI   ScienceOn
39 American Public Health Association (APHA). 1998. Standard Methods for Examination of Water and Wastewater, 20th Ed. American Public Health Association, American Water Works Association and Water Pollution Control Federation, Washington DC, USA.
40 Lin, Z., Y. Zhu, T. L. Kalabegishvili, N. Y. Tsibakhashvili, and H. Y. Holman. 2006. Effect of chromate action on morphology of basalt-inhabiting bacteria. Mater. Sci. Eng. C 26: 610-612.   DOI   ScienceOn