Browse > Article
http://dx.doi.org/10.4014/jmb.1507.07096

Heterologous Expression and Characterization of a Thermostable Exo-β-D-Glucosaminidase from Aspergillus oryzae  

Wu, Dingxin (State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University)
Wang, Linchun (State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University)
Li, Yuwei (State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University)
Zhao, Shumiao (State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University)
Peng, Nan (State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University)
Liang, Yunxiang (State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University)
Publication Information
Journal of Microbiology and Biotechnology / v.26, no.2, 2016 , pp. 347-355 More about this Journal
Abstract
An exo-β-D-glucosaminidase (AorCsxA) from Aspergillus oryzae FL402 was heterologously expressed and purified. The deduced amino acid sequence indicated that AorCsxA belonged to glycoside hydrolase family 2. AorCsxA digested colloid chitosan into glucosamine but not into chitosan oligosaccharides, demonstrating exo-β-D-glucosaminidase (CsxA) activity. AorCsxA exhibited optimal activity at pH 5.5 and 50℃; however, the enzyme expressed in Pichia pastoris (PpAorCsxA) showed much stronger thermostability at 50℃ than that expressed in Escherichia coli (EcAorCsxA), which may be related to glycosylation. AorCsxA activity was inhibited by EDTA and most of the tested metal ions. A single amino acid mutation (F769W) in AorCsxA significantly enhanced the specific activity and hydrolysis velocity as revealed by comparison of Vmax and kcat values with those of the wild-type enzyme. The three-dimensional structure suggested the tightened pocket at the active site of F769W enabled efficient substrate binding. The AorCsxA gene was heterologously expressed in P. pastoris, and one transformant was found to produce 222 U/ml activity during the high-cell-density fermentation. This AorCsxA-overexpressing P. pastoris strain is feasible for large-scale production of AorCsxA.
Keywords
Exo-β-D-glucosaminidase; thermostability; glucosamine; Aspergillus oryzae; high-cell-density fermentation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Nidheesh T, Kumar PG, Suresh PV. 2015. Enzymatic degradation of chitosan and production of D-glucosamine by solid substrate fermentation of exo-β-D-glucosaminidase (exochitosanase) by Penicillium decumbens CFRNT15. Int. Biodeterior. Biodegrad. 97: 97-106.   DOI
2 Liu B, Li Z, Hong Y, Ni J, Sheng D, Shen Y. 2006. Cloning, expression and characterization of a thermostable exo-β-D-glucosaminidase from the hyperthermophilic archaeon Pyrococcus horikoshii. Biotechnol. Lett. 28: 1655-1660.   DOI
3 Liu L, Liu Y, Shin H-D, Chen R, Li J, Du G, Chen J. 2013. Microbial production of glucosamine and N-acetylglucosamine: advances and perspectives. Appl. Microbiol. Biotechnol. 97: 6149-6158.   DOI
4 Nanjo F, Katsumi R, Sakai K. 1990. Purification and characterization of an exo-β-D-glucosaminidase, a novel type of enzyme, from Nocardia orientalis. J. Biol. Chem. 265: 10088-10094.
5 Nogawa M, Takahashi H, Kashiwagi A, Ohshima K, Okada H, Morikawa Y. 1998. Purification and characterization of exo-β-D-glucosaminidase from a cellulolytic fungus, Trichoderma reesei PC-3-7. Appl. Environ. Microbiol. 64: 890-895.
6 Pechsrichuang P, Yoohat K, Yamabhai M. 2013. Production of recombinant Bacillus subtilis chitosanase, suitable for biosynthesis of chitosan-oligosaccharides. Bioresour. Technol. 127: 407-414.   DOI
7 Peng N, Xu W, Wang F, Hu J, Ma M, Hu Y, et al. 2013. Mitsuaria chitosanase with unrevealed important amino acid residues: characterization and enhanced production in Pichia pastoris. Appl. Microbiol. Biotechnol. 97: 171-179.   DOI
8 Sashiwa H, Fujishima S, Yamano N, Kawasaki N, Nakayama A, Muraki E, et al. 2002. Production of N-acetyl-D-glucosamine from α-chitin by crude enzymes from Aeromonas hydrophila H-2330. Carbohydr. Res. 337: 761-763.   DOI
9 Sun Y, Zhang J, Wu S, Wang S. 2013. Preparation of D-glucosamine by hydrolysis of chitosan with chitosanase and β-D-glucosaminidase. Int. J. Biol. Macromol. 61: 160-163.   DOI
10 Sawitzke AD, Shi H, Finco MF, Dunlop DD, Bingham CO, Harris CL, et al. 2008. The effect of glucosamine and/or chondroitin sulfate on the progression of knee osteoarthritis: a report from the glucosamine/chondroitin arthritis intervention trial. Arthritis Rheum. 58: 3183-3191.   DOI
11 Setnikar I, Cereda R, Pacini MA, Revel L. 1991. Antireactive properties of glucosamine sulfate. Arzneimittelforschung 41: 157-161.
12 Sinha S, Dhakate SR, Kumar P, Mathur RB, Tripathi P, Chand S. 2012. Electrospun polyacrylonitrile nanofibrous membranes for chitosanase immobilization and its application in selective production of chitooligosaccharides. Bioresour. Technol. 115: 152-157.   DOI
13 Tanaka T, Fukui T, Atomi H, Imanaka T. 2003. Characterization of an exo-β-D-glucosaminidase involved in a novel chitinolytic pathway from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. J. Bacteriol. 185: 5175-5181.   DOI
14 Yang S, Lv S, Li L, Cui Y, Liu B, Liu T. 2015. Characterization of an exo-β-D-glucosaminidase from the hyperthermophilic archaeon Pyrococcus furiosus. Basic Clin. Pharmacol. Toxicol. 117: 16-16.
15 Zhang XY, Dai AL, Zhang XK, Kuroiwa K, Kodaira R, Shimosaka M, Okazaki M. 2000. Purification and characterization of chitosanase and exo-β-D-glucosaminidase from a koji mold, Aspergillus oryzae IAM2660. Biosci. Biotechnol. Biochem. 64: 1896-1902.   DOI
16 Chao CF, Chen YY, Cheng CY, Li YK. 2013. Catalytic function of a newly purified exo-β-D-glucosaminidase from the entomopathogenic fungus Paecilomyces lilacinus. Carbohydr. Polym. 93: 615-621.   DOI
17 Chen Xe, Xia W, Yu X. 2005. Purification and characterization of two types of chitosanase from Aspergillus sp. CJ22-326. Food Res. Int. 38: 315-322.   DOI
18 Binod P, Sandhya C, Suma P, Szakacs G, Pandey A. 2007. Fungal biosynthesis of endochitinase and chitobiase in solid state fermentation and their application for the production of N-acetyl-D-glucosamine from colloidal chitin. Bioresour. Technol. 98: 2742-2748.   DOI
19 Côté N, Fleury A, Dumont-Blanchette É, Fukamizo T, Mitsutomi M, Brzezinski R. 2006. Two exo-β-D-glucosaminidases/exochitosanases from actinomycetes define a new subfamily within family 2 of glycoside hydrolases. Biochem. J. 394: 675-686.   DOI
20 Clegg DO, Reda DJ, Harris CL, Klein MA, O’Dell JR, Hooper MM, et al. 2006. Glucosamine, chondroitin sulfate, and the two in combination for painful knee osteoarthritis. N. Engl. J. Med. 354: 795-808.   DOI
21 Harish Prashanth KV, Tharanathan RN. 2007. Chitin/chitosan: modifications and their unlimited application potential — an overview. Trends Food Sci. Technol. 18: 117-131.   DOI
22 Eom T, Lee K. 2003. Characteristics of chitosanases from Aspergillus fumigatus KB-1. Arch. Pharm. Res. 26: 1036-1041.   DOI
23 Ike M, Isami K, Tanabe Y, Nogawa M, Ogasawara W, Okada H, Morikawa Y. 2006. Cloning and heterologous expression of the exo-β-D-glucosaminidase-encoding gene (gls93) from a filamentous fungus, Trichoderma reesei PC-3-7. Appl. Microbiol. Biotechnol. 72: 687-695.   DOI
24 Fukamizo T, Fleury A, Côté N, Mitsutomi M, Brzezinski R. 2006. Exo-β-D-glucosaminidase from Amycolatopsis orientalis: catalytic residues, sugar recognition specificity, kinetics, and synergism. Glycobiology 16: 1064-1072.   DOI
25 Honda Y, Shimaya N, Ishisaki K, Ebihara M, Taniguchi H. 2011. Elucidation of exo-β-D-glucosaminidase activity of a family 9 glycoside hydrolase (PBPRA0520) from Photobacterium profundum SS9. Glycobiology 21: 503-511.   DOI
26 Imoto T. 1971. A simple activity measurement of lysozyme. Agric. Biol. Chem. 35: 1154-1156.   DOI
27 Jung WJ, Kuk JH, Kim KY, Jung KC, Park RD. 2006. Purification and characterization of exo-β-D-glucosaminidase from Aspergillus fumigatus S-26. Protein Express. Purif. 45: 125-131.   DOI
28 Kim SY, Shon DH, Lee KH. 1998. Purification and characteristics of two types of chitosanases from Aspergillus fumigatus KH-94. J. Microbiol. Biotechnol. 8: 568-574.
29 Kuk JH, Jung WJ, Jo GH, Kim YC, Kim KY, Park RD. 2005. Production of N-acetyl-β-D-glucosamine from chitin by Aeromonas sp. GJ-18 crude enzyme. Appl. Microbiol. Biotechnol. 68: 384-389.   DOI
30 Li S, Wang C, Xia W. 2009. Expression, purification, and characterization of exo-β-D-glucosaminidase of Aspergillus sp. CJ22-326 from Escherichia coli. Carbohydr. Res. 344: 1046-1049.   DOI