• Title/Summary/Keyword: Metal Impurity

Search Result 116, Processing Time 0.022 seconds

PEMOCVD of Ti(C,N) Thin Films on D2 Steel and Si(100) Substrates at Low Growth Temperatures

  • Kim, Myung-Chan;Heo, Cheol-Ho;Boo, Jin-Hyo;Cho,Yong-Ki;Han, Jeon-Geon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.211-211
    • /
    • 1999
  • Titanium nitride (TiN) thin films have useful properties including high hardness, good electrical conductivity, high melting point, and chemical inertness. The applications have included wear-resistant hard coatings on machine tools and bearings, decorative coating making use of the golden color, thermal control coatings for widows, and erosion resistant coatings for spacecraft plasma probes. For all these applications as feature sizes shrink and aspect ratios grow, the issue of good step coverage becomes increasingly important. It is therefore essential to manufacture conformal coatings of TiN. The growth of TiN thin films by chemical vapor deposition (CVD) is of great interest for achieving conformal deposition. The most widely used precursor for TiN is TiCl4 and NH3. However, chlorine impurity in the as-grown films and relatively high deposition temperature (>$600^{\circ}C$) are considered major drawbacks from actual device fabrication. To overcome these problems, recently, MOCVD processes including plasma assisted have been suggested. In this study, therefore, we have doposited Ti(C, N) thin films on Si(100) and D2 steel substrates in the temperature range of 150-30$0^{\circ}C$ using tetrakis diethylamido titanium (TDEAT) and titanium isopropoxide (TIP) by pulsed DC plamsa enhanced metal-organic chemical vapor deposition (PEMOCVD) method. Polycrystalline Ti(C, N) thin films were successfully grown on either D2 steel or Si(100) surfaces at temperature as low as 15$0^{\circ}C$. Compositions of the as-grown films were determined with XPS and RBS. From XPS analysis, thin films of Ti(C, N) with low oxygen concentration were obtained. RBS data were also confirmed the changes of stoichiometry and microhardness of our films. Radical formation and ionization behaviors in plasma are analyzed by optical emission spectroscopy (OES) at various pulsed bias and gases conditions. H2 and He+H2 gases are used as carrier gases to compare plasma parameter and the effect of N2 and NH3 gases as reactive gas is also evaluated in reduction of C content of the films. In this study, we fond that He and H2 mixture gas is very effective in enhancing ionization of radicals, especially N resulting is high hardness. The higher hardness of film is obtained to be ca. 1700 HK 0.01 but it depends on gas species and bias voltage. The proper process is evident for H and N2 gas atmosphere and bias voltage of 600V. However, NH3 gas highly reduces formation of CN radical, thereby decreasing C content of Ti(C, N) thin films in a great deal. Compared to PVD TiN films, the Ti(C, N) film grown by PEMOCVD has very good conformability; the step coverage exceeds 85% with an aspect ratio of more than 3.

  • PDF

The Effects of SO2 and NH3 on the N2O Reduction with CO over MMO Catalyst (MMO 촉매와 CO 환원제에 의한 N2O 분해에서 SO2 및 NH3 영향 연구)

  • Chang, Kil Sang;You, Kyung-Chang
    • Applied Chemistry for Engineering
    • /
    • v.20 no.6
    • /
    • pp.653-657
    • /
    • 2009
  • Nitrous oxide is a typical greenhouse gas which is produced from various organic or fossil fuel combustion processes as well as chemicals producing plants. $N_2O$ has a global worming potential of 310 times that of $CO_2$ on per molecule basis, and also acts as an ozone depleting material in the stratosphere. However, its removal is not easy for its chemical stability characteristics. Most SCR processes with several effective reducing agents generally require the operation temperature higher than $450^{\circ}C$, and the catalytic conversion becomes decreased significantly when NOx is present in the stream. Present experiments have been performed to obtain basic design data of actual application concerning the effects of $SO_2$ and $NH_3$ on the interim and long term activities of $N_2O$ reduction with CO over the mixed metal oxide (MMO) catalyst derived from a hydrotalcite-like compound precursor. The MMO catalysts used in the experiments, have shown prominent activities displaying full conversions of $N_2O$ near $200^{\circ}C$ when CO is introduced. The presence of $SO_2$ is considered to show no critical behavior as can be met in the $NH_3$ SCR DeNOx systems and the effect of $NH_3$ is considered to play as mere an impurity to share the active sites of the catalysts.

Light Scattering Properties of Highly Textured Ag/Al:Si Bilayer Back Reflectors (표면텍스처링된 이중구조 Ag/Al:Si 후면반사막의 광산란 특성)

  • Jang, Eun-Seok;Baek, Sang-Hun;Jang, Byung-Yeol;Park, Sang-Hyun;Yoon, Kyung-Hoon;Rhee, Young-Woo;Cho, Jun-Sik
    • Korean Journal of Materials Research
    • /
    • v.21 no.10
    • /
    • pp.573-579
    • /
    • 2011
  • Highly textured Ag, Al and Al:Si back reflectors for flexible n-i-p silicon thin-film solar cells were prepared on 100-${\mu}m$-thick stainless steel substrates by DC magnetron sputtering and the influence of their surface textures on the light-scattering properties were investigated. The surface texture of the metal back reflectors was influenced by the increased grain size and by the bimodal distribution that arose due to the abnormal grain growth at elevated deposition temperatures. This can be explained by the structure zone model (SZM). With an increase in the deposition temperatures from room temperature to $500^{\circ}C$, the surface roughness of the Al:Si films increased from 11 nm to 95 nm, whereas that of the pure Ag films increased from 6 nm to 47 nm at the same deposition temperature. Although Al:Si back reflectors with larger surface feature dimensions than pure Ag can be fabricated at lower deposition temperatures due to the lower melting point and the Si impurity drag effect, they show poor total and diffuse reflectance, resulting from the low reflectivity and reflection loss on the textured surface. For a further improvement of the light-trapping efficiency in solar cells, a new type of back reflector consisting of Ag/Al:Si bilayer is suggested. The surface morphology and reflectance of this reflector are closely dependent on the Al:Si bottom layer and the Ag top layer. The relationship between the surface topography and the light-scattering properties of the bilayer back reflectors is also reported in this paper.

The Effect of NH3 Concentration during Co-precipitation of Precursors from Leachate of Lithium-ion Battery Positive Electrode Active Materials (리튬이차전지 양극활물질의 암모니아 침출액에서 공침법에 의한 활물질 전구체의 합성에 대한 암모니아 농도의 영향)

  • Park, Sanghyuk;Ku, Heesuk;Lee, Kyoung-Joon;Song, Jun Ho;Kim, Sookyung;Sohn, Jeongsoo;Kwon, Kyungjung
    • Resources Recycling
    • /
    • v.24 no.6
    • /
    • pp.9-16
    • /
    • 2015
  • In a recycling scheme of spent lithium ion batteries, a co-precipitation process for the re-synthesis of precursor is essential after the leaching of lithium ion battery scraps. In this study, the effect of ammonia as impurity during the co-precipitation process was investigated in order to re-synthesize a precursor of Ni-rich cathode active material $LiNi_{0.6}Co_{0.2}Mn_{0.2}O_2$ (NCM 622). As ammonia concentration increases from 1 M (the optimum condition for synthesis of the precursors based on 2 M of metal salt solution) to 4 M, the composition of obtained precursors deviates from the designed composition, most notably for Ni. The Ni co-precipitation efficiency gradually decreases from 100% to 87% when the concentration of ammonia solution increases from 1 M to 4 M. Meanwhile, the morphological properties of the obtained precursors such as sphericity, homogeneity and size distribution of particles were also investigated.

Spectroscopic Characteristics of Tourmalines from Antandrokomby, Madagascar (마다가스카르 Antandrokomby 지역 투어말린의 분광학적 특성)

  • Lee, Sung;Ahn, Yong-Kil;Seo, Jin-Gyo;Park, Jong-Wan
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.4
    • /
    • pp.385-393
    • /
    • 2009
  • The spectroscopic characteristics of Madagascar tourmaline were investigated by UV-Vis and FTIR spectroscopy. Physical features were similar to other region's tourmalines. The green and blue samples showed strong absorption band in the 714~743 nm due to $Fe^{3+}$, pink samples showed strong absorption band in the 510~530 nm due to $Mn^{3+}$, brown samples showed strong absorption at 324 nm due to $Mn^{2+}-Ti^{4+}$ IVCT and the colorless samples only revealed weak absorption at 406~413 nm or no absorptions due to low quantity of Mn. Combination of the stretching and bending mode cationic hydroxyl units (metal-OH) are observed in the 4300~4500 $cm^{-1}$. The parallel tube-shaped inclusions which contain hematite were detected generally. This investigation revealed that Cu was not detected but Fe and Mn were detected in the Madagascar tourmalines, and the various colors appear according to the amount of those impurity elements.

Preparation and Oxygen Permeation Properties of La0.07Sr0.3Co0.2Fe0.8O3-δ Membrane (La0.07Sr0.3Co0.2Fe0.8O3-δ 분리막의 제조 및 산소투과 특성)

  • Park, Jung Hoon;Kim, Jong Pyo;Baek, Il Hyun
    • Applied Chemistry for Engineering
    • /
    • v.19 no.5
    • /
    • pp.477-483
    • /
    • 2008
  • $La_{0.7}Sr_{0.3}Co_{0.2}Fe_{0.8}O_{3-{\delta}$ oxide was synthesized by a citrate method and a typical dense membrane of perovskite oxide has been prepared using as-prepared powder by pressing and sintering at $1300^{\circ}C$. Precursor of $La_{0.7}Sr_{0.3}Co_{0.2}Fe_{0.8}O_{3-{\delta}$ prepared by citrate method was investigated by TGA and XRD. Metal-citrate complex in precursor was decomposed into perovskite oxide in the temperature range of $260{\sim}410^{\circ}C$ but XRD results showed $SrCO_3$ existed as impurity at less than $900^{\circ}C$. Electrical conductivity of membrane increased with increasing temperature but then decreased over $700^{\circ}C$ in air atmosphere ($Po_2=0.2atm$) and $600^{\circ}C$ in He atmosphere ($Po_2=0.01atm$) respectively due to oxygen loss from the crystal lattice. The oxygen permeation flux increased with increasing temperature and maximum oxygen permeation flux of $La_{0.7}Sr_{0.3}Co_{0.2}Fe_{0.8}O_{3-{\delta}$ membrane with 1.6 mm thickness was about $0.31cm^3/cm^2{\cdot}min$ at $950^{\circ}C$. The activation energy for oxygen permeation was 88.4 kJ/mol in the temperature range of $750{\sim}950^{\circ}C$. Perovskite structure of membrane was not changed after permeation test of 40 h and the membrane was stable without secondary phase change with 0.3 mol Sr addition.