• Title/Summary/Keyword: Metal Fuel

Search Result 862, Processing Time 0.029 seconds

A Study on the Application of Standards for Clearance of Metal Waste Generated During the Decommissioning of NPP by Using the RESRAD-RECYCLE (RESRAD-RECYCLE을 활용한 원전 해체 시 발생하는 금속폐기물의 자체처분 기준 적용 연구)

  • Song, Jong Soon;Kim, Dong Min;Lee, Sang Heon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.4
    • /
    • pp.305-320
    • /
    • 2016
  • The metal waste generated during nuclear power plant decommissioning constitutes a large proportion of the total radioactive waste. This study investigates the current status of domestic and international regulatory requirements for clearance and the clearance experience of domestic institutions. The RESRAD-RECYCLE code was used for analyzing the clearance of the metal wastes generated during actual nuclear power plant decommissioning, and assessment of the exposure dose of twenty-six scenarios was carried out. The evaluation results will be useful in preliminary analysis of clearance and recycling during nuclear power plant decommissioning. As a next step, the effects of reducing disposal costs by clearance can be studied.

Study on an Aluminum Modified Alloy and Manufacturing Conditions for Hot Metal Gas Forming (열간가스성형용 알루미늄 개발 합금 공정 조건에 관한 연구)

  • Lee, G.M.;Go, G.Y.;Lee, H.C.;Kim, D.O.;Lee, Y.K.;Kim, J.S.;Song, J.H.
    • Transactions of Materials Processing
    • /
    • v.26 no.4
    • /
    • pp.222-227
    • /
    • 2017
  • In order to respond to environmental regulations and increased demand for fuel economy, the demand for lightweight car bodies has grown. Hydroforming of aluminum is one possible solution as it eliminates the need for additional welding to develop closed cross-sectional parts. However, the low formability of aluminum is a limitation of its application. On the other hand, the ductility of materials can be improved at higher temperatures, and hot metal gas forming has been widely applied in the production of lightweight vehicle parts. In this study, aluminum alloy for pipe extrusion was developed by controlling the Mg:Cr:Mn ratio based on AA5083. Mechanical properties of the developed material were examined by tensile test and were applied to a forming simulation. Cold forming simulation for preforming and non-isothermal hot forming simulation for hot metal gas forming were carried out to validate process conditions. A prototype of the sidemember was manufactured under the given process condition. Finally, thickness distribution was compared with finite element analysis results.

Dispersion Characteristics of Carbon Black Particles in a High Viscous Simulated Solution (고점성 모사용액 내 Carbon Black 입자의 분산특성)

  • Jeong, Kyung-Chai;Eom, Sung-Ho;Kim, Yeon-Ku;Cho, Moon Sung
    • Applied Chemistry for Engineering
    • /
    • v.24 no.2
    • /
    • pp.165-170
    • /
    • 2013
  • An external gelation method in place of an internal gelation method applied to the fabrication process of an intermediated compound of Uranium Oxy-Carbide (UCO) kernel spheres for Very High Temperature Reactor (VHTR) fuel preparation is under development in Korea. For the preliminary experiments of the UCO kernel sphere preparation using an external gelation method, the carbon black dispersion experiments were carried out using a simulated broth solution. From the selection experiments of various kinds of carbon black through dispersion experiments in a viscous metal salt solution, Cabot G carbon black was selected owing to its dispersion stability, and the homogeneous dispersing state of carbon black particles in our system. For the effective dispersion of nano-size aggregated carbon black particles in a high viscous liquid, the carbon black particles in a metal salt solution were first de-aggregated with ultrasonic force. The mixed solution was then dispersed secondly by the use of the extremely high-speed agitation with a mechanical mixer of 6000 rpm after feeding the Poly Vinyl Alcohol (PVA) in the solution. This results in the broth solution with good stability and homogeneity alongside no further changes in physical properties.

Development of a Simulation Program for the Li-Reduction Process of PWR Spent Fuel (PWR 사용후핵연료의 Li 환원과정 모사 프로그램 개발)

  • Lee, Yun-Hee;Shin, Hee-Sung;Jang, Ji-Woon;Kim, Ho-Dong;Yoon, Ji-Sup
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.4 no.4
    • /
    • pp.335-344
    • /
    • 2006
  • In this paper a computer program was developed, which simulates the Li reduction process of PWR spent fuel, and the amount of a produced metal or chloride compound was calculated at the various amount of Li with the program. It establishes a database, which is composed of some characteristics related to a chemical reaction equation and thermodynamic data, and it calculates the transformed rate of PWR spent fuel oxide at the certain amount of Li by using the database as input data. As the results of the performance test of the program, it was validated that the transformed values of oxides, except for $Eu_2O_3$ and $Sm_2O_3$, were almost the same to within about a 6 % error with those calculated by the previous code and that the calculated amount of Li was also exactly consistent with the theoretical one, which is used for a complete reaction of each oxide in a single chemical reaction. A relationship between Li and the transformed metal of each oxide was analyzed on the basis of the quantities calculated with the verified development program. Of the results, when the amount of Li was given to be 250 mole, the 83.73 percentage of $UO_2$ was transformed into U while the remainder was still to be $UO_2$. In addition, it was appeared that the 297 mole of Li was needed to completely convert $UO_2$ into U.

  • PDF

A STUDY ON OXIDATION TREATMENT OF URANIUM METAL CHIP UNDER CONTROLLING ATMOSPHERE FOR SAFE STORAGE

  • Kim, Chang-Kyu;Ji, Chul-Goo;Bae, Sang-Oh;Woo, Yoon-Myeoung;Kim, Jong-Goo;Ha, Yeong-Keong
    • Nuclear Engineering and Technology
    • /
    • v.43 no.4
    • /
    • pp.391-398
    • /
    • 2011
  • The U metal chips generated in developing nuclear fuel and a gamma radioisotope shield have been stored under immersion of water in KAERI. When the water of the storing vessels vaporizes or drains due to unexpected leaking, the U metal chips are able to open to air. A new oxidation treatment process was raised for a long time safe storage with concepts of drying under vacuum, evaporating the containing water and organic material with elevating temperature, and oxidizing the uranium metal chips at an appropriate high temperature under conditions of controlling the feeding rate of oxygen gas. In order to optimize the oxidation process the uranium metal chips were completely dried at higher temperature than $300^{\circ}C$ and tested for oxidation at various temperatures, which are $300^{\circ}C$, $400^{\circ}C$, and $500^{\circ}C$. When the oxidation temperature was $400^{\circ}C$, the oxidized sample for 7 hours showed a temperature rise of $60^{\circ}C$ in the self-ignition test. But the oxidized sample for 14 hours revealed a slight temperature rise of $7^{\circ}C$ representing a stable behavior in the self-ignition test. When the temperature was $500^{\circ}C$, the shorter oxidation for 7 hours appeared to be enough because the self-ignition test represented no temperature rise. By using several chemical analyses such as carbon content determination, X-ray deflection (XRD), Infrared spectra (IR) and Thermal gravimetric analysis (TGA) on the oxidation treated samples, the results of self-ignition test of new oxidation treatment process for U metal chip were interpreted and supported.

Corrosion of Containment Alloys in Molten Salt Reactors and the Prospect of Online Monitoring

  • Hartmann, Thomas;Paviet, Patricia
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.1
    • /
    • pp.43-63
    • /
    • 2022
  • The aim of this review is to communicate some essential knowledge of the underlying mechanism of the corrosion of structural containment alloys during molten salt reactor operation in the context of prospective online monitoring in future MSR installations. The formation of metal halide species and the progression of their concentration in the molten salt do reflect containment corrosion, tracing the depletion of alloying metals at the alloy salt interface will assure safe conditions during reactor operation. Even though the progress of alloying metal halides concentrations in the molten salt do strongly understate actual corrosion rates, their prospective 1st order kinetics followed by near-linearly increase is attributed to homogeneous matrix corrosion. The service life of the structural containment alloy is derived from homogeneous matrix corrosion and near-surface void formation but less so from intergranular cracking (IGC) and pitting corrosion. Online monitoring of corrosion species is of particular interest for molten chloride systems since besides the expected formation of chromium chloride species CrCl2 and CrCl3, other metal chloride species such as FeCl2, FeCl3, MoCl2, MnCl2 and NiCl2 will form, depending on the selected structural alloy. The metal chloride concentrations should follow, after an incubation period of about 10,000 hours, a linear projection with a positive slope and a steady increase of < 1 ppm per day. During the incubation period, metal concentration show 1st order kinetics and increasing linearly with time1/2. Ideally, a linear increase reflects homogeneous matrix corrosion, while a sharp increase in the metal chloride concentration could set a warning flag for potential material failure within the projected service life, e.g. as result of intergranular cracking or pitting corrosion. Continuous monitoring of metal chloride concentrations can therefore provide direct information about the mechanism of the ongoing corrosion scenario and offer valuable information for a timely warning of prospective material failure.

Effect of Magnesium Oxide on Physical and Chemical Properties of FKM Elastomer (FKM Elastomer의 물리적 및 화학적 성질에 미치는 산화마그네슘의 영향)

  • Lee, Chang-Seop;Choi, Gi-Tae;Choi, Han-Hwal
    • Elastomers and Composites
    • /
    • v.38 no.1
    • /
    • pp.57-64
    • /
    • 2003
  • Metal oxide(MgO) was added to FKM rubber in order to develop automotive fuel hose which ran show elastic characteristics under extreme condition. Cure characteristics, physical properties, thermal resistance and fuel resistance of FKM compounded rubber with MgO were investigated. MgO was mixed to FKM rubber materials within the range of $0{\sim}20phr$. From the test results of rheological properties and Mooney viscosity, the $t_{s2}$, $T_{c90}$ values increased as the MgO contents increased in FKM rubber compounding. Hardness and 100% modulus of FKM compounded rubber slightly increased, but tensile strength and elongations at break slightly decreased. From the test results of thermal resistance of rubber specimens at 130, 150, and $170^{\circ}C$ for 70 hrs, the changing rate of physical properties was found to be relatively small. Fuel resistance tests were carried out for fuel A, B, C and D at $40^{\circ}C$ for 70hrs, and the results showed that the changing rate in physical properties was found to increase from Fuel A to D, Furthermore thermal properties of FKM compounded rubber containing MgO were also investigated by using TGA/DSC. The optimum mixing ratio of additive to FKM rubber to get the maximum effect on thermal resistance and fuel resistance, within the range of desirable specification for rubber material, was determined to be 6 phr for MgO.

Prediction of Sink Phenomenon during Forging Process and Improvement of LPI Fuel Filter Housing Forging Product (LPI 차량용 연료필터 상부 하우징 냉간 단조 성형 공정에서 sink 현상 예측 및 개선)

  • Kim, Jun-Young;Park, Sang-Min;Hong, Seokmoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.6
    • /
    • pp.395-399
    • /
    • 2017
  • The LPI fuel filter housings used in automobiles were made from conventional die castings but have recently been developed by cold forging to improve the weight and durability. On the other hand, a sink may develop at the core of the forged product due to the resulting T-shape, which not only reduces the aesthetics, but also increases the post-processing cost of the product. Therefore, this research focused on methods to predict and mitigate sink development and progression during the T-shape forging process. Finite element analysis of the forging process was first performed to determine the optimal initial workpiece devoid of burrs and underfills. An accurate sink prediction was then obtained via metal flow analysis, which was a result of the finite element simulation. Through finite element analysis, it was confirmed that sink development is a product of the differences in nodal velocities arising from the T-shaped forging process. Consequently, a pad was inserted beneath the sink to minimize these velocity differences. The results yielded significant improvement with regard to the sink defect. This method was practically applied to an industrial site to validate the sink improvement.

Characterization of inorganic materials in industrial waste and RDF using SEM-EDS (SEM-EDS를 이용한 산업단지폐기물과 고형연료의 무기 성분 규명)

  • Jeong, Moon-Heon;Lee, Ju-Ho;Yoo, Jeong-Kun;Lee, Gang-Woo;Shon, Byung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.10
    • /
    • pp.2786-2793
    • /
    • 2009
  • Recently, the development and spread of the new recyclable energy becomes urgent because of the depletion of fossil fuel and strengthening the environmental regulation. To recovery from the waste out of the many new recyclable energies has been proved as the most favorable when the potential value of energy source is compared. The RDF from the waste has been approved as the most economical method out of the other methods. However, the toxic gases (HCl, Dioxin etc) and heavy metals generated during the burning of the industrial wastes have been pointed out as problems. The PVC, alkali metal chloride, and alkaline earth metal chloride are major materials for emitting the chlorine and chlorine compounds have the problem such as the erosion on the heat collection device. This research has analyzed the heavy metal components containing in the industrial waste, and the concentration of Cl and S in the industrial waste generated in B industrial complex are slightly high than that of the A industrial complex. The results can be used to discuss the origin of inorganic components in industrial waste and utilized as a base data to improve the performance of the RDF as fuel.

A Study on the Comparison of Brazed Joint of Zircaloy-4 with PVD-Be and Zr-Be Amorphous alloys as Filler Metals (PVD-Be와 비정질 Zr-Be 합금을 용가재로 사용한 Zircaloy-4의 브레이징 접합부의 비교 연구)

  • Hwang, Yong-Hwa;Kim, Jae-Yong;Lee, Hyung-Kwon;Koh, Jin-Hyun;Oh, Se-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.2
    • /
    • pp.113-119
    • /
    • 2006
  • Brazing is an important manufacturing process in the fabrication of Heavy Water Reactor fuel rods, in which bearing and spacer pads are joined to Zircaloy-4 cladding tubes. The physical vapor deposition(PVD) technique is currently used to deposit metallic Be on the surfaces of pads as a filler metal. Amorphous Zr-Be binary alloys which are manufactured by rapid solidification process are under developing to substitute the conventional PVD-Be coating. In the present study, brazed joint with PVD and amorphous alloys of $Zr_{1-x}Be_{x}(0.3{\le}x{\le}0.5)$ as filler metals are compared by mechanism, microstructure and hardness. The thickness of brazed joint with amorphous alloys became much smaller than that of PVD-Be. The erosion of base metal did not occur in the brazed joint with amorphous alloys. The brazing mechanism for PVD-Be seems to be Be diffusion into Zr-4 with capillary action resulting from eutectic reaction while that for amorphous alloys are associated with the liquid phase formation in the brazed joint. The brazed joint microstructure with PVD-Be consists of dendrite while that with amorphous alloys is globular. The $Zr_{0.7}Be_{0.3}$ alloy shows the smooth interface with little erosion in the base metal and is recommended a most suitable brazing filler metal for Zircaloy-4.

  • PDF