• Title/Summary/Keyword: Metal Fan

Search Result 43, Processing Time 0.023 seconds

A Study on the Heat Rejection to Coolant in a Gasoline Engine (가솔린 엔진에서의 냉각수로의 전열량에 대한 연구)

  • 류택용;신승용;이은현;최재권
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.6
    • /
    • pp.77-88
    • /
    • 1997
  • The heat rejection to coolant is a dominant factor for building vehicle cooling system such as radiator and cooling fan. Since the vehicle cooling system also has effects on fuel consumption and noise, the study of heat rejection to coolant has been emphasized. However, the study on heat rejection to coolant has been mainly focused on the field that related to the characteristics of combustion and localized heat loss. It is no much of use in design for the entire cooling system because it is focused on such a specific point. In this work, the heat rejection rate to coolant for four different engines are obtained to derive a simple heat transfer empirical formula that can be applied to the engine cooling system design, and it is compared with the other studies. Also, to observe effects of engine operation factors and heat transfer factors on coolant, we measured the metal temperature and the heat rejection rate. The heat rejection to coolant does not depend significantly upon the coolant flowrate, but mainly upon the amount of air fuel mixture and the air fuel ratio as long as the composition of coolant does not change. The reduction of heat rejection to coolant did not effectively improve the fuel consumption, but was mostly converted to raise the exhaust gas temperature and the oil temperature.

  • PDF

Superconducting Film Fabrication using Field Assisted Electrophoresis (보조전계를 이용한 전기영동 초전도 막의 제작)

  • ;;;;Fan Zhanguo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.105-108
    • /
    • 2002
  • For fabricating high T$\sub$c/ superconducting deposited film, novel electrophoretic deposition technique applied to deposit surface charged Particles on metal substrate with oxy d.c field has been studied. The electric properties of superconducting film don't improve easily because the particles of deposition film are deposited randomly on substrate and don't make orientation affected to its critical current density. In this paper, we studied conventional electrophoresis in addition to a.c field assisted for the improvement of BSCCO superconducting film with high orientation of deposition particles.

  • PDF

A Study on the Characteristics of an Oscillating Fluidic Atomizer

  • Kim, K.H.;Kiger, K.;Lee, W.
    • Journal of ILASS-Korea
    • /
    • v.11 no.2
    • /
    • pp.105-112
    • /
    • 2006
  • A unique feature of fluidic atomizers is that the nozzle geometry produces a thin capillary Jet which is forced to oscillate on a 2-dimensional plane through the use of a passive feedback mechanism. The objective of the current work is to characterize the influence of the stagnation pressure at the nozzle exit, jet oscillation and stretching on the breakup properties of the capillary ligament. To achieve this, shadow graph technique is used to measure size, shape, velocity and the number density of the droplets as a function of the position within the spray fan. The breakup length, defined as the radial distance from the breakup point, is analyzed as a function of the non-dimensional parameters. Finally, a kinematic model is developed to simulate the breakup of the oscillating jets at low stagnation pressures. Using the existing jet breakup theories, the model is used to predict the size and diameter distribution of the droplets after primary atomization.

  • PDF

An Effect of Harmful Materials During Welding Work (용접 작업 중 발생하는 유해물질의 영향)

  • Lee, Kyung-Man;Lee, Chul-Ku
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.1
    • /
    • pp.43-49
    • /
    • 2008
  • This study is about an influence of harmful factors of welding fumes such as Fe, Mn, Cu, Zn to workers who inhales them in welding sites. The influence can be measured with the density of heavy metals in blood after welding. The main factors of the measurement are TWA, a density of welding fume, and a level of heavy metals. The results indicate that there is a positive effect of moving fans as a way of improving the condition in welding workplaces. While welding was done, TWA exceeded the level of Fe 40% and Zn 10% and the level of heavy metals in blood was below the standard for the workers who were under the experiment. Also when the wind was applied on the front side by a fan, the welding fume significantly reduced. It can be concluded that wearing protection gears with safety devices is one of important factors.

THE DEVELOPMENT OF FAN COIL UNIT MOTOR WITH PLASTIC FRAME (합성수지 프레임을 이용한 휀코일 유니트 모터 개발)

  • Lee, Sun-Hwi
    • Proceedings of the KIEE Conference
    • /
    • 1987.11a
    • /
    • pp.61-66
    • /
    • 1987
  • The metals has been used to the electric motor frame and brackets. The purpose of this project is to substitute engineering plastic doter frame for metal because of the demand for small size and environmental reliability. As a result of considering of mechanical strength, heat and injection characteristic of engineering plastics. PBT GF 30 has been selected as the material of electric motor frame including brackets. Design of the frame has been carried out on enough consideration of mechanical strength, heat-resisting and endurance. For the prevention of lower efficiency, the length of airgap between stator and rotor is reduced and for the reduction of vibration, slot combination is changed and the length of stator is increased.

  • PDF

Metal Complexes Containing Multidentate Ligands (I). Cobalt (III) Complexes of 1,10-Dibenzyltriethylenetetraamine and 1,10-Dibenzyl-5R-methyltriethylenetetraamine (1,10-디벤질트리에틸렌테트라아민과 1,10-디벤질-5R-메틸트리에틸렌테트라아민의 코발트(III) 착물)

  • Jun Moo-Jin;Chui, Fan Liu
    • Journal of the Korean Chemical Society
    • /
    • v.19 no.2
    • /
    • pp.98-103
    • /
    • 1975
  • The synthesis of two new ligands, 1,10-dibenzyltriethylenetetraamine (1,10-$Be_2trien$) and 1,10-dibenzyl-5R-methyltriethylenetetraamine (1,10-$Be_2$-5R-Metrien), and the preparation of the dichloro cobalt(III) complexes of these ligands are reported. Both tetraamine ligands yield exclusively trans geometry upon coordination to the cobalt(III) ion.

  • PDF

Intelligent big data analysis and computational modelling for the stability response of the NEMS

  • Juncheng Fan;Qinyang Li;Sami Muhsen;H. Elhosiny Ali
    • Computers and Concrete
    • /
    • v.31 no.2
    • /
    • pp.139-149
    • /
    • 2023
  • This article investigates the statically analysis regarding the thermal buckling behavior of a nonuniform small-scale nanobeam made of functionally graded material based on classic beam theories along with the nonlocal Eringen elasticity. The material distribution of functionally graded structures is composed of temperature-dependent ceramic and metal phases in axial and thickness directions, called two-dimensional functionally graded (2D-FG). The partial differential (PD) formulations and end conditions are extracted by using to the conservation energy method. The porosity voids are assumed in the nonuniform functionally graded (FG) structure. The thermal loads are in the axial direction of the beam. The extracted nonlocal PD equations are also solved by employing generalized differential quadrature method (GDQM). Last but not least, the information acquired is used to produce miniature sensors, providing a unique perspective on the growth of nanoelectromechanical systems (NEMS).

Heavy metal adsorption of a novel membrane material derived from senescent leaves: Kinetics, equilibrium and thermodynamic studies

  • Zhang, Yu;Tang, Qiang;Chen, Su;Gu, Fan;Li, Zhenze
    • Membrane and Water Treatment
    • /
    • v.9 no.2
    • /
    • pp.95-104
    • /
    • 2018
  • Copper pollution around the world has caused serious public health problems recently. The heavy metal adsorption on traditional membranes from wastewater is limited by material properties. Different adsorptive materials are embedded in the membrane matrix and act as the adsorbent for the heavy metal. The carbonized leaf powder has been proven as an effective adsorbent material in removing aqueous Cu(II) because of its relative high specific surface area and inherent beneficial groups such as amine, carboxyl and phosphate after carbonization process. Factors affecting the adsorption of Cu(II) include: adsorbent dosage, initial Cu(II) concentration, solution pH, temperature and duration. The kinetics data fit well with the pseudo-first order kinetics and the pseudo-second order kinetics model. The thermodynamic behavior reveals the endothermic and spontaneous nature of the adsorption. The adsorption isotherm curve fits Sips model well, and the adsorption capacity was determined at 61.77 mg/g. Based on D-R model, the adsorption was predominated by the form of physical adsorption under lower temperatures, while the increased temperature motivated the form of chemical adsorption such as ion-exchange reaction. According to the analysis towards the mechanism, the chemical adsorption process occurs mainly among amine, carbonate, phosphate and copper ions or other surface adsorption. This hypothesis is confirmed by FT-IR test and XRD spectra as well as the predicted parameters calculated based on D-R model.

Removal of Chromium (VI) by Escherichia coli Cells Expressing Cytoplasmic or Surface-Displayed ChrB: a Comparative Study

  • Zhou, Xiaofeng;Li, Jianghui;Wang, Weilong;Yang, Fan;Fan, Bingqian;Zhang, Chenlu;Ren, Xiaojun;Liang, Feng;Cheng, Rong;Jiang, Fengying;Zhou, Huaibin;Yang, Juanjuan;Tan, Guoqiang;Lyu, Jianxin;Wang, Wu
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.7
    • /
    • pp.996-1004
    • /
    • 2020
  • Various genetically engineered microorganisms have been developed for the removal of heavy metal contaminants. Metal biosorption by whole-cell biosorbents can be enhanced by overproduction of metal-binding proteins/peptides in the cytoplasm or on the cell surface. However, few studies have compared the biosorption capacity of whole cells expressing intracellular or surface-displayed metal-adsorbing proteins. In this study, several constructs were prepared for expressing intracellular and surface-displayed Ochrobactrum tritici 5bvl1 ChrB in Escherichia coli BL21(DE3) cells. E. coli cells expressing surface-displayed ChrB removed more Cr(VI) from aqueous solutions than cells with cytoplasmic ChrB under the same conditions. However, intracellular ChrB was less susceptible to variation in extracellular conditions (pH and ionic strength), and more effectively removed Cr(VI) from industrial wastewater than the surface-displayed ChrB at low pH (<3). An adsorption-desorption experiment demonstrated that compared with intracellular accumulation, cell-surface adsorption is reversible, which allows easy desorption of the adsorbed metal ions and regeneration of the bioadsorbent. In addition, an intrinsic ChrB protein fluorescence assay suggested that pH and salinity may influence the Cr(VI) adsorption capacity of ChrB-expressing E. coli cells by modulating the ChrB protein conformation. Although the characteristics of ChrB may not be universal for all metal-binding proteins, our study provides new insights into different engineering strategies for whole-cell biosorbents for removing heavy metals from industrial effluents.

Optical Property of Zinc Oxide Thin Films Prepared by Using a Metal Naphthenate Precursor (금속 나프텐산염을 이용하여 제조한 ZnO 박막의 광학적 특성)

  • Lim, Y.M.;Jung, J.H.;Jeon, K.O.;Jeon, Y.S.;Hwang, K.S.
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.10 no.3
    • /
    • pp.193-203
    • /
    • 2005
  • Highly c-axis oriented nanocrystalline ZnO thin films on silica glass substrates were prepared by spin coating-pyrolysis process with a zinc naphthenate precursor. Only the XRD intensity peak of (002) phase was observed for all samples. With an increase in heat treatment temperature, the peak intensity of (002) phase increases. No significant aggregation of particle was present. From scanning probe microscopy analyses, three-dimensional grain growth, which was thought to be due to inhomogeneous substrate surface and c-axis oriented grain growth of the ZnO phase, was independent on heal-treatment temperature. Highly homogeneous surface of the highly-oriented ZnO film was observed at $800^{\circ}C$. All the films exhibited a high transmittance (above 80%) in visible region except film heat treated at $1000^{\circ}C$, and showed a sharp fundamental absorption edge at about $0.38{\sim}0.40{\mu}m$. The estimated energy band gap for all the films were within the range previously reported for films and single crystal. ZnO films, consisting of densely packed grains with smooth surface morphology were obtained by heat treatment at $600^{\circ}C{\sim}800^{\circ}C$, expected to be ideal for practical application, such as transparent conductive film and optical device.

  • PDF