Browse > Article
http://dx.doi.org/10.12989/mwt.2018.9.2.095

Heavy metal adsorption of a novel membrane material derived from senescent leaves: Kinetics, equilibrium and thermodynamic studies  

Zhang, Yu (School of Urban Rail Transportation, Soochow University)
Tang, Qiang (School of Urban Rail Transportation, Soochow University)
Chen, Su (School of Urban Rail Transportation, Soochow University)
Gu, Fan (National Center for Asphalt Technology, Auburn University)
Li, Zhenze (Canadian Nuclear Safety Commission)
Publication Information
Membrane and Water Treatment / v.9, no.2, 2018 , pp. 95-104 More about this Journal
Abstract
Copper pollution around the world has caused serious public health problems recently. The heavy metal adsorption on traditional membranes from wastewater is limited by material properties. Different adsorptive materials are embedded in the membrane matrix and act as the adsorbent for the heavy metal. The carbonized leaf powder has been proven as an effective adsorbent material in removing aqueous Cu(II) because of its relative high specific surface area and inherent beneficial groups such as amine, carboxyl and phosphate after carbonization process. Factors affecting the adsorption of Cu(II) include: adsorbent dosage, initial Cu(II) concentration, solution pH, temperature and duration. The kinetics data fit well with the pseudo-first order kinetics and the pseudo-second order kinetics model. The thermodynamic behavior reveals the endothermic and spontaneous nature of the adsorption. The adsorption isotherm curve fits Sips model well, and the adsorption capacity was determined at 61.77 mg/g. Based on D-R model, the adsorption was predominated by the form of physical adsorption under lower temperatures, while the increased temperature motivated the form of chemical adsorption such as ion-exchange reaction. According to the analysis towards the mechanism, the chemical adsorption process occurs mainly among amine, carbonate, phosphate and copper ions or other surface adsorption. This hypothesis is confirmed by FT-IR test and XRD spectra as well as the predicted parameters calculated based on D-R model.
Keywords
carbonized leaf powder; membrane; Cu(II); adsorption; benefit groups; mechanism;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Fang, X.F., Li, J.S., Li, X., Pan, S.L., Zhang, X., Sun, X.Y., Shen, J.Y., Han, W.Q. and Wang, L.J. (2017), "Internal pore decoration with polydopamine nanoparticle on polymeric ultrafiltration membrane for enhanced heavy metal removal", Chem. Eng. J., 314, 38-49.   DOI
2 Figueroa-Torres, G.M., Certucha-Barragan, M.T., Acedo-Felix, E., Monge-Amaya, O., Almendariz-Tapia, F.J. and Gasca-Estefania, L.A. (2016), "Kinetic studies of heavy metals biosorption by acidogenic biomass immobilized in clinoptilolite", J. Taiwan Inst. Chem. Eng., 61, 241-246.   DOI
3 Fiol, N., Villaescusa, I., Martinez, M., Miralles, N., Poch, J. and Serarols, J. (2006), "Sorption of Pb(II), Ni(II), Cu(II) and Cd(II) from aqueous solution by olive stone waste", Sep. Purif. Technol., 50(1), 132-140.   DOI
4 Gao, Y., Gu, F., and Zhao, Y. (2013), "Thermal oxidative aging characterization of SBS modified asphalt", J. Wuhan Univ. Technol. Mater. Sci., 28(1), 88-91.   DOI
5 Gavrilescu, M. (2004), "Removal of heavy metals from the environment by biosorption", Eng. Life Sci., 4(3), 219-232.   DOI
6 Gavrilescu, M., Pavel, L.V. and Cretescu, I. (2009), "Characterization and remediation of soils contaminated with uranium", J. Hazard. Mater., 163(2-3), 475-510.   DOI
7 Ghaemi, N., Madaeni, S.S., Daraei, P., Rajabi, H., Zinadini, S., Alizadeh, A., Heydari, R., Beygzadeh, M. and Ghouzivand, S. (2015), "Polyethersulfone membrane enhanced with iron oxide nanoparticles for copper removal from water: Application of new functionalized $Fe_3O_4$ nanoparticles", Chem. Eng. J., 263, 101-112.   DOI
8 Gulnaz, O. and Saygideger, S.E. (2005), "Study of Cu(II) biosorption by dried activated sludge: Effect of physicochemical environment and kinetics study", J. Hazard. Mater., 120(1-3), 193-200.   DOI
9 Helfferich, F. (1962), Ion Exchange, McGraw-Hill, New York, U.S.A.
10 Jin, Z., Akiyama, T., Chung, B.Y., Matsumoto, Y., Iiyama, K. and Watanabe, S. (2003), "Changes in lignin content of leaf litters during mulching", Phytochem., 64(5), 1023-1031.   DOI
11 Jones, R.A. and Pyrrole Studies, I. (1963), "The infrared spectra of 2-monosubstituted pyrroles", Austr. J. Chem., 16(1), 93-100.   DOI
12 Kicsi, A., Bilba, D. and Macoveanu, M. (2010), "Equilibrium and kinetic modeling of Zn (II) sorption from aqueous solutions by sphagnum moss peat", Environ. Eng. Manage. J., 9(3), 341-349.
13 Kilic, M., Keskin, M.E., Mazlum, S. and Mazlum, N. (2008), "Hg(II) and Pb(II) adsorption on activated sludge biomass: Effective biosorption mechanism", J. Min. Proc., 87(1-2), 1-8.   DOI
14 Kim, J. and Bruggen, B.V.D. (2010), "The use of nanoparticles in polymeric and ceramic membrane structures: Review of manufacturing procedures and performance improvement for water treatment", Environ. Pollut., 158(7), 2335-2349.   DOI
15 Kovalchuk, O., Titov, V., Hohn, B. and Kovalchuk, L. (2001), "A sensitive transgenic plant system to detect toxic inorganic compounds in the environment", Nat., 19(6), 568-572.
16 Kumar, P.S., Abhinaya, R.V., Arthi, V., Lashmi, K.G., Priyadharshini, M. and Sivanesan, S. (2014), "Adsorption of methylene blue dye onto surface modified cashew nut shell", Environ. Eng. Manage. J., 13(3), 545-556.
17 Li, Z.Z., Tang, X.W., Chen, Y.M. and Wang, Y. (2009), "Activation of Firmiana simplex leaf and the enhanced Pb(II) adsorption performance: Equilibrium and kinetic studies", J. Hazard. Mater., 169(1-3), 386-394.   DOI
18 Low, K.S., Lee, C.K. and Leo, A.C. (1995), "Removal of metals from electroplating wastes using banana pith", Bioresour. Technol., 51(2-3), 227-231.   DOI
19 Jackson, K.D. (1997), "A guide to identifying common inorganic fillers and activators using vibrational spectroscopy", J. Rubber Res., 12(2), 102-111.
20 Lin, L., Liu, G.G., Lv, W.Y., Yao, K., Lin, Q.T. and Zhang, Y. (2013), "Removal of chelated copper by $TiO_2$ photocatalysis: Synergetic mechanism between Cu (II) and organic ligands", Iran. J. Chem. Chem. Eng., 32(1), 103-112.
21 Mata, Y.N., Blazquez, M.L., Ballester, A., Gonzalez, F. and Munoz, J.A. (2008), "Characterization of the biosorption of cadmium, lead and copper with the brown alga fucus vesiculosus", J. Hazard. Mater., 158(2-3), 316-323.   DOI
22 Ministry of Health, Labour and Welfare (2014), Regulations of Drinking Water, Ministry of Health, Labour and Welfare, Japan, .
23 Mondal, P.K., Ahmad, R. and Kumar, R. (2014), "Adsorptive removal of hazardous methylene blue by fruit shell of cocos nucifera", Environ. Eng. Manage. J., 13(2), 231-240.
24 Mukherjee, R., Bhunia, P. and De, S. (2016), "Impact of graphene oxide on removal of heavy metals using mixed matrix membrane", Chem. Eng. J., 292, 284-297.   DOI
25 Naiya, T.K., Bhattacharya, A.K., Mandal, S. and Das, S.K. (2009), "The sorption of lead(II) ions on rice husk ash", J. Hazard. Mater., 163(2-3), 1254-1264.   DOI
26 Nemes, L. and Bulgariu, L. (2016), "Optimization of process parameters for heavy metals biosorption onto mustard waste biomass", Open Chem., 14(1), 175-187.   DOI
27 Saeed, A., Akhtar, M.W. and Iqbal, M. (2005), "Removal and recovery of heavy metals from aqueous solution using papaya wood as a new biosorbent", Sep. Purif. Technol., 45(1), 25-31.   DOI
28 NHMRC (2011), Australian Drinking Water Guidelines Paper 6 National Water Quality Management Strategy, National Health and Medical Research Council, National Resource Management Ministerial Council, Commonwealth of Australia, Canberra, Australia, 7-5.
29 Redlich, O. and Peterson, D.L.A. (1959), "Useful adsorption isotherm", J. Phys. Chem., 63(6), 1024-1026.   DOI
30 Repelin, Y., Husson, E., Abello, L. and Lucazeau, G. (1985), "Structural study of gels of $V_2O_5$: Normal coordinate analysis", Spectrochimica Acta Part A Molecul. Spectroscop., 41(8), 993-1003.   DOI
31 Sangi, M.R., Shahmoradi, A., Zolgharnein, J., Azimi, G.H. and Ghorbandoost, M. (2008), "Removal and recovery of heavy metals from aqueous solution using ulmus carpinifolia and fraxinus excelsior tree leaves", J. Hazard. Mater., 155(3), 513-522.   DOI
32 Singer, D.M., Johnson, S.B., Catalano, J.G., Farges, F. and Brown Jr., G.E.B. (2009), "Sequestration of sr(ii) by calcium oxalate-a batch uptake study and exafs analysis of model compounds and reaction products", Geochimica Cosmochimica Acta, 72(20), 5055-5069.   DOI
33 Sinitsya, A., CopiKovA, J., Prutyanov, V., Skoblya, S. and Machovic, V. (2000), "Amidation of highly methoxylated citrus pectin with primary amines", Carbohyd. Polym., 42(4), 359.   DOI
34 Sips, R. (1948), "On the structure of a catalyst surface", J. Chem. Phys., 16(5), 490-495.   DOI
35 Tang, Q., Katsumi, T., Inui, T. and Li, Z.Z. (2015b), "Influence of pH on the membrane behavior of bentonite amended Fukakusa clay", Sep. Purif. Technol., 141, 132-142.   DOI
36 Somya, A., Rafiquee, M. and Varshney, K.G. (2009), "Synthesis, characterization and analytical applications of sodium dodecyl sulphate cerium (iv) phosphate: A new pb (ii) selective, surfactant-based intercalated fibrous ion exchanger", Colloid. Surface. A Physicochem. Eng. Asp., 336(1), 142-146.   DOI
37 Qi, B.C. and Aldrich, C. (2008), "Biosorption of heavy metals from aqueous solutions with tobacco dust", Bioresour. Technol., 99(13), 5595-5601.   DOI
38 Suteu, D., Zaharia, C., Muresan, A., Muresan, R. and Popescu, A. (2009), "Using of industrial waste materials for textile wastewater treatment", Environ. Eng. Manage. J., 8(5), 1097-1102.
39 Tang, Q., Chu, J.M., Wang, Y., Zhou, T. and Liu, Y. (2016a), "Characteristics and factors influencing Pb(II) desorption from a Chinese clay by citric acid", Sep. Sci. Technol., 51(17), 2734-2743.   DOI
40 Tang, Q., Katsumi, T., Inui, T. and Li, Z.Z. (2015a), "Membrane behavior of bentonite-amended compacted clay towards Zn(II) and Pb(II)", Membr. Water Treat., 6(5), 393-409.   DOI
41 Tang, Q., Katsumi, T., Inui, T. and Li, Z.Z. (2014), "Membrane behavior of bentonite-amended compacted clay", Soil. Found., 54(3), 329-344.   DOI
42 Tang, Q., Tang, X.W., Hu, M.M., Li, Z.Z., Chen, Y.M. and Lou, P. (2010), "Removal of Cd(II) from aqueous solution with activated firmiana simplex leaf: Behaviors and affecting factors", J. Hazard. Mater., 179(1-3), 95-103.   DOI
43 Uslu, G. and Tanyol, M. (2006), "Equilibrium and thermodynamic parameters of single and binary mixture biosorption of lead (II) and copper (II) ions onto Pseudomonas putida: Effect of temperature", J. Hazard. Mater., 135(1-3), 87-93.   DOI
44 Tang, Q., Tang, X.W., Li, Z.Z., Chen, Y.M., Kou, N.Y. and Sun, Z.F. (2009), "Adsorption and desorption behaviour of Pb(II) on a natural kaolin: Equilibrium, kinetic and thermodynamic studies", J. Chem. Technol. Biotechnol., 84(9), 1371-1380.   DOI
45 Tang, Q., Tang, X.W., Li, Z.Z., Wang, Y., Hu, M.M., Zhang, X.J. and Chen, Y.M. (2012), "Zn(II) removal with activated firmiana simplex leaf: Kinetics and equilibrium studies", J. Environ. Eng., 138(2), 190-199.   DOI
46 Tang, Q., Wang, H.Y., Tang, X.W. and Wang, Y. (2016b), "Removal of aqueous Ni(II) with carbonized leaf powder: Kinetics and equilibrium", J. Centr. South Univ., 23(4), 778-786.   DOI
47 Unuabonah, E.I., Adebowale, K.O. and Olu-Owolabi, B.I. (2007), "Kinetic and thermodynamic studies of the adsorption of lead (II) ions onto phosphate-modified kaolinite clay", J. Hazard. Mater., 144(1-2), 386-395.   DOI
48 USEPA, National Primary Drinking Water Regulations, EPA 816-F-09-0004, May 2009.
49 Wang, J. and Chen, C. (2014), "Chitosan-based biosorbents: modification and application for biosorption of heavy metals and radionuclides", Bioresour. Technol., 160(5), 129-141.   DOI
50 WHO (2011), Guidelines for Drinking-Water Quality, World Health Organization.
51 Wong, K.K., Lee, C.K., Low, K.S. and Haron, M.J. (2003), "Removal of Cu and Pb by tartaric acid modified rice husk from aqueous solutions", Chemosphere, 50(1), 23-28.   DOI
52 Xiong, C.H. and Yao, C.P. (2013), "Adsorption behavior of Cu(II) in aqueous solutions by SQD-85 resin", Iran. J. Chem. Chem. Eng., 32(2), 57-88.
53 Zhao, Y., Gu, F., Xu, J. and Jin, J. (2010), "Analysis of aging mechanism of SBS polymer modified asphalt based on Fourier transform infrared spectrum", J. Wuhan Univ. Technol. Mater. Sci., 25(6), 1047-1052.   DOI
54 Zhu, J., Tian, M., Zhang, Y., Zhang, H. and Liu, J. (2015), "Fabrication of a novel "loose" nanofiltration membrane by facile blending with chitosan-montmorillonite nanosheets for dyes purification", Chem. Eng. J., 265, 184-193.   DOI
55 Carson, B.L., Ellis, H.V. and Mccann, J.L. (1987), "Toxicology and biological monitoring of metals in humans", Quarter. Rev. Biol., 62(4), 259.
56 Ahmady-Asbchin, S., Andres, Y., Gerente, C. and Cloirec, P.L. (2008), "Biosorption of Cu(II) from aqueous solution by fucus serratus: Surface characterization and sorption mechanisms", Bioresour. Technol., 99(14), 6150-6155.   DOI
57 Akar, T., Tunali, S. and Kiran, I. (2005), "Botrytis cinerea as a new fungal biosorbent for removal of Pb(II) from aqueous solutions", Biochem. Eng. J., 25(3), 227-235.   DOI
58 Aksu, Z. and Isoglu, I.A. (2005), "Removal of copper(II) ions from aqueous solution by biosorption onto agricultural waste sugar beet pulp", Proc. Biochem., 40, 3031-3044.   DOI
59 Anbia, M., Kargosha, K. and Khoshbooei, S. (2015), "Heavy metal ions removal from aqueous media by modified magnetic mesoporous silica MCM-48", Chem. Eng. Res. Des., 93, 779-788.   DOI
60 Bulgariu, L., Ratoi, M., Bulgariu, D. and Macoveanu, M. (2009), "The sorption of lead(II) ions from aqueous solutions on peat: Kinetics study", Environ. Eng. Manage. J., 8(2), 289-295.
61 Casabo, J., Izquierdo, M., Ribas, J. and Diaz, C. (1983), "Copper(II) complexes with derivatives of 8-Aminoquinoline", Trans. Met. Chem., 8(2), 110-113.   DOI
62 EU (2014), European Drinking Water Directive, European Commission, European Union, .
63 Faghihian, H. and Rasekh, M. (2014), "Removal of chromate from aqueous solution by a novel clinoptilolite-polyanillin composite", Iran. J. Chem. Chem. Eng., 33(1), 45-51.
64 Fan, H.J., Shu, H.Y., Yang, H.S. and Chen, W.C. (2006), "Characteristics of landfill leachates in central Taiwan", Sci. Total Environ., 361(1-3), 25-37.   DOI