• Title/Summary/Keyword: Metal Detection

Search Result 628, Processing Time 0.032 seconds

Signal Processing for Pulse Induction Metal Detector (자성센서 기반 지뢰탐지기를 위한 신호처리)

  • Shin, Beom-Su;Yang, DongWon;Jung, Byung-Min
    • Journal of IKEEE
    • /
    • v.22 no.3
    • /
    • pp.532-538
    • /
    • 2018
  • This paper proposes an algorithm for signal processing which is used in pulse induction metal mine detectors. The detection power can be obtained from magnetic variation on the search coil. The calibration data should be made when there is no target because the detection power is difference between with and without a target. And it is also updated periodically because of surrounding various noises. Lastly, we keep a watch on the signal slope to identify exact position and signal power of mine detection.

Phosphorescent Azacrown Ether-appended Iridium (III) Complex for the Selective Detection of Hg2+ in Aqueous Acetonitrile

  • Li, Yinan;Yoon, Ung-Chan;Hyun, Myung-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.1
    • /
    • pp.122-126
    • /
    • 2011
  • A new phosphorescent cyclometalated heteroleptic iridium (III) complex with an ancillary ligand of 4-azacrownpicolinate was prepared and its metal ion selective phosphorescent chemosensing behavior was investigated. The new iridium (III) complex exhibits notable phosphorescence quenching for Hg2+ in aqueous 50% acetonitrile solution with respect to the selective phosphorescent detection of various metal ions including $Li^+,Na^+,K^+,Cs^+,Mg^{2+},Ca^{2+},Ba^{2+},Fe^{2+},Ni^{2+},Cu^{2+},Zn^{2+},Ag^+,Pb^{2+},Cd^{2+},Cr^{2+},Cr^{3+}$ and $Hg^{2+}$. The phosphorescence quenching for $Hg^{2+}$ increased linearly with increasing concentration of $Hg^{2+}$ in the range of $10{\mu}M-700{\mu}M$ even in the presence of other metal ions, except for $Cu^{2+}$. Consequently, the new iridium (III) complex has the potential to be utilized for the determination of parts per million levels of $Hg^{2+}$ in aqueous acetonitrile media.

Damage Detection of Fiber-Metal Laminates Using Optical Fiber Sensors (광섬유 센서를 이용한 섬유-금속 적층판의 손상 감지)

  • 양유창;한경섭
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.161-164
    • /
    • 2002
  • Optical fiber vibrations sensors (OFVSs) and extrinsic Fabry-Perot interferometer (EFPI) were used in damage monitoring of fiber-metal laminates(FML). The optical fiber vibration sensor and EFPI were applied in order to detect and evaluate the strain, damage and failure of FML. Damages in composites, such as matrix cracks, delamination and fiber breakage may occur as a result of excessive load, fatigue and low-velocity impacts. Tensile test was performed with the measurement of optical signal and acoustic emission (AE). The signals of the optical fiber vibration sensor due to damages were quantitatively evaluated by wavelet transform. EFPI was less sensible to the damage signals compared with the optical fiber vibration sensor. It was found that damage information of comparable in quality to acoustic emission data could be obtained from the optical fiber vibration sensor signals.

  • PDF

Damage Detection of Fiber-Metal Laminates Under Axial and Indentation Load (섬유-금속 적층판의 인장 및 압입 하중에서의 손상감지)

  • Yang, Yoo-Chang;Han, Kyung-Seop
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.370-375
    • /
    • 2003
  • Optical fiber vibrations sensors (OFVSs) and extrinsic Fabry-Perot interferometer (EFPI) were used in damage monitoring of fiber-metal laminates(FML). The optical fiber vibration sensor and EFPI were applied in order to detect and evaluate the strain, damage and failure of FML. Damages in composites, such as matrix cracks, delamination and fiber breakage may occur as a result of excessive load, fatigue and low-velocity impacts. Tensile and indentation test was performed with the measurement of optical signal and acoustic emission (AE). The signals of the optical fiber vibration sensor due to damages were quantitatively evaluated by wavelet transform. It was found that damage information of comparable in quality to acoustic emission data could be obtained from the optical fiber vibration sensor signals.

  • PDF

Damage and Failure Detection of Fiber-Metal Laminates Under Indentation Load (섬유-금속 적층판의 압입 하중에서의 손상 및 파손 검출)

  • 양유창;한경섭
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.42-45
    • /
    • 2003
  • Optical fiber vibrations sensors (OFVSs) and extrinsic Fabry-Perot interferometer (EFPI) were used in damage monitoring of fiber-metal laminates(FML). The optical fiber vibration sensor and EFPI were applied in order to detect and evaluate the strain, damage and failure of FML. Damages in composites, such as matrix cracks, delamination and fiber breakage may occur as a result of excessive load, fatigue and low-velocity impacts. Indentation test was performed with the measurement of optical signal and acoustic emission (AE). The signals of the optical fiber vibration sensor due to damages were quantitatively evaluated by wavelet transform. It was found that damage information of comparable in quality to acoustic emission data could be obtained from the optical fiber vibration sensor signals.

  • PDF

Design and Fabrication of a W-band FMCW Radar for the Metal Target Detection Under the Ground Clutter Environment (지면 클러터 환경에서 금속표적감지를 위한 W-대역 FMCW 레이더의 설계 및 제작)

  • Park Jung-Dong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.7 no.3 s.18
    • /
    • pp.93-100
    • /
    • 2004
  • In this paper, we describe the design, fabrication, and test results of a W-band FMCW radar for the metal target detection under the ground clutter environment. In order to detect metal targets on the ground, we used a single cassegrain antenna with the beamwidth of $1.45^{\circ}$ which forms pencil-beam footprint on the ground. A log envelope detector was applied to improve radar performance in the severe ground clutter known as Weibull and log normal clutter. The designed FMCW radar can acquire altitude information from the ground clutter with $\sigma_0=-23dB$ at the height of 160m. The fabricated W-band FMCW radar transmits 11 dBm power and the dynamic range of the receiver is from -106dBm to -30dBm. The performances of the fabricated sensors were tested out in the fields and detected a car target of 200m apart on the grass.

Control and Display Device of Underground Object Detect system (지하매설물 탐지시스템의 제어 및 표시장치)

  • 서정만;정순기
    • Journal of the Korea Society of Computer and Information
    • /
    • v.6 no.3
    • /
    • pp.35-43
    • /
    • 2001
  • Imposing electromagnetic field using transmitter of buried metal object in skill that detect underground object sensing person atonement in being widowed on the land being magnetized upside numerical value of buried metal object searching way used most widely current by skill be. This paper proposed about mode and detection system of underground object that sense the changed magnetic and judge real radish buried metal object sign of the cook because this treatise forms magnetic in land and design and composition of display device. Also, through simulation of detection system of underground object, showed that can measure radish judgment sign of the cock of underground object

  • PDF

Potentiometric Characteristics of Ion-Selective Electrodes Based on Upper-Rim Calix[4]crown Neutral Carrier

  • 강유라;오현준;이경문;차근식;남학현;백경수;임혜재
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.2
    • /
    • pp.207-211
    • /
    • 1998
  • Potentiometric characteristics of DOS plasticized PVC-based membranes containing upper-rim calix[4]crown neutral carrier to various metal cations and protonated alkylamines have been examined. Although the calix[4]crown-based membrane electrodes exhibited substantial emf responses to alkali and alkaline earth metal cations, their high detection limits (- log[Cs+]=4.5) and sub-Nernstian response slopes (48 mV/pCs+) to the most selective cation, cesium, indicate that the metal cation complexing ability of calix[4]crown is much weaker than that of macrocyclic crown ethers. However, the calix[4]crown-based membrane electrodes exhibited near-Nernstian response slopes (56 mV/decade for hexylNH3+) with low detection limits (log[hexylNH3+]= - 6.7) to most alkylammonium ions compared to those of blank (DOS plasticized PVC membrane with no ionophore) or crown ether-based membranes. While the selectivity patterns of blank and crown ether-based membranes are determined primarily by the lipophilicity of alkylammonium ions, the membranes doped with calix[4]crown ionophore could effectively discriminate the steric shapes of nonpolar alkyl groups of alkylammonium ions.

Nanocatalyst Decorated Metal Oxides on Highly Selective Chemical Sensors

  • Jung, Ji-Won;Jang, Ji-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.187-193
    • /
    • 2022
  • The accurate detection of environmental and biomarker gas species has attracted increasing attention due to their broad applications, such as air quality monitoring, disease diagnosis, and explosive chemicals detection. To accurately detect target gas species using chemiresistive gas sensors, using nanocatalysts on semiconducting metal oxides (SMOs) is considered the most promising approach. This review summarizes recent studies on methods for nanocatalysts functionalization on SMOs to achieve the highly selective gas sensors. To this end, we discuss various nanocatalyst decorated metal oxide-based chemiresistive gas sensors and provide an insight to construct highly accurate gas sensors.

Chemiresistive Gas Sensors for Detection of Chemical Warfare Agent Simulants

  • Lee, Jun Ho;Lee, Hyun-Sook;Kim, Wonkyung;Lee, Wooyoung
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.3
    • /
    • pp.139-145
    • /
    • 2019
  • Precautionary detection of chemical warfare agents (CWAs) has been an important global issue mainly owing to their toxicity. To achieve proper detection, many studies have been conducted to develop sensitive gas sensors for CWAs. In particular, metal-oxide semi-conductors (MOS) have been investigated as promising sensing materials owing to their abundance in nature and excellent sensitivity. In this review, we mainly focus on various MOS-based gas sensors that have been fabricated for the detection of two specific CWA simulants, 2-chloroethyl ethyl sulfide (2-CEES) and dimethyl methyl phosphonate (DMMP), which are simulants of sulfur mustard and sarin, respectively. In the case of 2-CEES, we mainly discuss $CdSnO_3-$ and ZnO-based sensors and their reaction mechanisms. In addition, a method to improve the selectivity of ZnO-based sensors is mentioned. Various sensors and their sensing mechanisms have been introduced for the detection of DMMP. As the reaction with DMMP may directly affect the sensing properties of MOS, this paper includes previous studies on its poisoning effect. Finally, promising sensing materials for both gases are proposed.