• Title/Summary/Keyword: Metal Contact

Search Result 1,121, Processing Time 0.032 seconds

Application of Screen Printing and Photo Lithography Multi-layer Metal Contact for Single Crystalline Silicon Solar Cells (단결정 실리콘 태양전지를 위한 screen printing 전극과 photo lithography 다층전극의 적용에 대한 연구)

  • Kim, Do-Wan;Choi, Jun-Young;Lee, Eun-Joo;Lee, Soo-Hong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.109-109
    • /
    • 2006
  • Screen printing (SP) metal contact is typically applied to the solar cells for mass production. However, SP metal contact has low aspect ratio, low accuracy, hard control of the substrate penetration and unclean process. On the other hand, photo lithograpy (PL) metal contact can reduce defects by metal contact. In this investigation, PL metal contact was obtained the multi-layer structure of Ti/Pd/Ag by e-beam process. We applied SP metal contact and PL metal contact to single crystalline silicon solar cells, and demonstrated the difference of conversion efficiency. Because PL metal contact silicon solar cell has Jsc (short circuit current density) better than silicon solar cell applied SP metal contact.

  • PDF

Role of edge patterning and metal contact for extremely low contact resistance on graphene

  • Jo, Seo-Hyeon;Park, Hyung-Youl;Park, Jin-Hong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.294.2-294.2
    • /
    • 2016
  • Graphene, a sigle atomic layered structure of graphite, has drawn many scientific interests for attractive future electronics and optoelectronics beyond silicon-based technology because of its robust physical, optical, and electrical properties. But high metal-graphene contact resistance prevents the successful integration of high speed graphene devices and circuits, although pristine graphene is known to have a novel carrier transport property. Meanwhile, in the recently reported metal-graphene contact studies, there are many attempts to reduce the metal-graphene contact resistance, such as doping and one-dimensional edge contact. However, there is a lack of quantitative analysis of the edge contact scheme through variously designed patterns with different metal contact. We first investigate the effets of edge contact (metal-graphene interface) on the contact resistance in terms of edge pattern design through patterning (photolithography + plasma etching) and electral measurements. Where the contact resistance is determined using the transfer length method (TLM). Finally, we research the role of metal-kind (Palladium, Copper, and Tianium) on the contact resistance through the edge-contacted devices, eventually minimizing contact resistance down to approximately $23{\Omega}{\cdot}{\mu}m$ at room temperature (approximately $19{\Omega}{\cdot}{\mu}m$ at 100 K).

  • PDF

Reduction of metal-graphene contact resistance by direct growth of graphene over metal

  • Hong, Seul Ki;Song, Seung Min;Sul, Onejae;Cho, Byung Jin
    • Carbon letters
    • /
    • v.14 no.3
    • /
    • pp.171-174
    • /
    • 2013
  • The high quality contact between graphene and the metal electrode is a crucial factor in achieving the high performance of graphene transistors. However, there is not sufficient research about contact resistance reduction methods to improve the junction of metal-graphene. In this paper, we propose a new method to decrease the contact resistance between graphene and metal using directly grown graphene over a metal surface. The study found that the grown graphene over copper, as an intermediate layer between the copper and the transferred graphene, reduces contact resistance, and that the adhesion strength between graphene and metal becomes stronger. The results confirmed the contact resistance of the metal-graphene of the proposed structure is nearly half that of the conventional contact structure.

Fabrication of One-Dimensional Graphene Metal Edge Contact without Graphene Exfoliation

  • Choe, Jeongun;Han, Jaehyun;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.371.2-371.2
    • /
    • 2016
  • Graphene electronics is one of the promising technologies for the next generation electronic devices due to the outstanding properties such as conductivity, high carrier mobility, mechanical, and optical properties along with extended applications using 2 dimensional heterostructures. However, large contact resistance between metal and graphene is one of the major obstacles for commercial application of graphene electronics. In order to achieve low contact resistance, numerous researches have been conducted such as gentle plasma treatment, ultraviolet ozone (UVO) treatment, annealing treatment, and one-dimensional graphene edge contact. In this report, we suggest a fabrication method of one-dimensional graphene metal edge contact without using graphene exfoliation. Graphene is grown on Cu foil by low pressure chemical vapor deposition. Then, the graphene is transferred on $SiO_2/Si$ wafer. The patterning of graphene channel and metal electrode is done by photolithography. $O_2$ plasma is applied to etch out the exposed graphene and then Ti/Au is deposited. As a result, the one-dimensional edge contact geometry is built between metal and graphene. The contact resistance of the fabricated one-dimensional metal-graphene edge contact is compared with the contact resistance of vertically stacked conventional metal-graphene contact.

  • PDF

Defect Characterization & Control for the Metal Contact with CVD Barrier Metal in Memory Device (반도체 제품의 CVD Barrier Metal기인 Contact불량 연구)

  • Park, Sang-Jun;Yoon, Joo-Byoung;Lee, Kyung-Woo;Lee, Sang-Ick;Kim, Jin-Sung;Chae, Seung-Ki;Chae, Hee-Sun;Roh, Yong-Han
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.179-180
    • /
    • 2007
  • 반도체의 최소 회로 선폭이 감소함에 따라 Contact 저항이 크게 증가하게 된다. Contact 저항을 낮추기 위하여 Tungsten Metal Contact을 일반적으로 사용하며, Si 기판과의 Ohmic 접촉 및 WF6의 Fluorine과 Si 반응을 억제하기 위한 Barrier Metal로 Ti/TiN 이중막을 사용한다. 본 논문에서는 90nm급 이하 제품의 CVD Ti/TiN Barrier Metal이 유발하는 불량 현상과 원인 규명에 대하여 연구하였으며, Ohmic Contact형성을 위해 TiSix형성 최적화 방안에 대해 정리하였다.

  • PDF

Effect of Metal Removal and Initial Residual Stress on Contact Fatigue Life (초기 잔류응력과 접촉표면 제거가 접촉피로수명에 미치는 영향)

  • Hur Hun-Mu;Goo Byeong-Choon;Choi Jae-Boong;Kim Young-Jin;Seo Jung-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.2 s.233
    • /
    • pp.341-349
    • /
    • 2005
  • Damage often occurs on the surface of railway wheel by wheel-rail contact fatigue. It should be removed before reaching wheel failure, because wheel failure can cause derailment with loss of life and property. The increase or decrease of the contact fatigue life by the metal removal of the contact surface were shown by many researchers, but it has not explained precisely why fatigue life increases or decreases. In this study, the effect of metal removal depth on the contact fatigue life for railway wheel has been evaluated by applying finite element analysis. It has been revealed that the residual stress and the plastic flow are the main factors determining the fatigue life. The railway wheel has the initial residual stress formed during the manufacturing process, and the residual stress is changed by thermal stress induced by braking. It has been found that the initial residual stress determines the amount of metal removal depth. Also, the effects of the initial residual stress and metal removal on the contact fatigue lift has been estimated, and an equation is proposed to decide the optimal metal removal depth for maximizing the contact fatigue life.

Effect of Metal Removal and Traction Force on Contact Fatigue Life (견인력과 접촉표면 제거가 접촉피로수명에 미치는 영향)

  • Seo Jung-Won;Hur Hun-Mu;Choi Jae-Boong;Kim Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.10 s.241
    • /
    • pp.1384-1391
    • /
    • 2005
  • Damage often occurs on the surface of railway wheels due to wheel-rail contact fatigue. It should be removed before reaching wheel failure, because wheel failure can cause derailment with loss of life and property. The increase or decrease of the contact fatigue lift by the metal removal of the contact surface were investigated by many researchers, but they have not considered initial residual stress and traction force. The railway wheel has the initial residual stress formed during the manufacturing process, and the residual stress is changed by thermal stress induced by braking. The traction force and residual stress are operated on wheels of locomotive and electric motor vehicle. In this study, the effect of metal removal depth on the contact fatigue life for a railway wheel has been evaluated by applying lolling contact fatigue test. The effect of the traction force and metal removal on the contact fatigue life has been estimated by finite element analysis. It has been found that the initial residual stress determines the amount of metal removal depth if the traction coefficient is less than 0.15. If the traction coefficient is greater than 0.2, however, the amount of metal removal depth is independent on the intial residual stress.

Investigation of the Ni/Cu metallization for high-efficiency, low cost crystlline silicon solar cells (고효율, 저가화 실리콘태양전지를 위한 Ni/Cu/Ag 금속전극의 특성 연구)

  • Lee, Ji-Hun;Cho, Kyeng-Yeon;Lee, Soo-Hong
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.235-240
    • /
    • 2009
  • Crystlline silicon solar cells markets are increasing at rapid pace. now, crystlline silicon solar cells markets screen-printing solar cell is occupying. screen-printing solar cells manufacturing process are very quick, there is a strong point which is a low cost. but silicon and metal contact, uses Ag & Al pates. because of, high contact resistance, high series resistance and sintering inside process the electric conductivity decreases with 1/3. and In pastes ingredients uses Ag where $80{\sim}90%$ is metal of high cost. because of low cost solar cells descriptions is difficult. therefore BCSC(Buried Contact Solar Cell) is developed. and uses light-induced plating, ln-line galvanization developed equipments. Ni/Cu matel contact solar cells researches. in Germany Fraunhofer ISE. In order to manufacture high-efficiency solar cells, metal selections are important. metal materials get in metal resistance does small, to be electric conductivity does highly. efficiency must raise an increase with rise of the curve factor where the contact resistance of the silicon substrate and is caused by few with decrement of series resistance. Ni metal materials the price is cheap, Ti comes similar resistance. Cu and Ag has the electric conductivity which is similar. and Cu price is cheap. In this paper, Ni/Cu/Ag metal contact cell with screen printing manufactured, silicon metal contact comparison and analysis.

  • PDF

Finite Element Analysis of the Unconstrained Cylindrical Bending Process Considering Continuous Contact Treatment (연속 접촉 처리를 고려한 실린더 벤딩 성형 공정의 유한요소해석)

  • Kim T. J.;Yang D. Y.
    • Transactions of Materials Processing
    • /
    • v.14 no.6 s.78
    • /
    • pp.547-552
    • /
    • 2005
  • In general, the sheet metal and die are described by finite elements for the simulation of the metal forming processes. Because the characteristics as continuum of the sheet metal are represented with triangles and rectangles, the errors occur inevitably in finite element analysis. Many contact schemes to describe the deformation modes exactly have been introduced in order to decrease these errors. In this study, a scheme for continuous contact treatment is proposed in order to consider the realistic behavior of contact phenomena during the forming process. The discrete mesh causes stepwise propagation of contact nodes of the sheet even though the contact region of the real forming process is altered very smoothly. It gives rise to convergence problem in case that the process, for example bending process, is sensitive to the contact between the sheet and the tools. The analysis of the unconstrained cylindrical bending process without blank holder is also presented in order to investigate the effect of the proposed algorithm.

Effect of RF Etch Conditions on Metal Contact Resistance (금속 접촉 저항에 대한 RF 식각 조건의 영향)

  • Kim, Do-U;Jeong, Cheol-Mo;Gu, Gyeong-Wan;Wang, Jin-Seok
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.4
    • /
    • pp.147-151
    • /
    • 2002
  • The resistances of metal2 contact to metall and poly Si are checked by various RF etch conditions in terms of pre-cleaning. The changes of resistance are evaluated by statistical analysis method(SAS) for the AC bias power, coil power and RF target. The contact area on poly Si is shown by TEM image and the distributions of contact resistance according to ar etch target and RTP are investigated. The RTP groups have larger variations than normal RF etch targets. When the RF etch target becomes lower and coil power becomes higher, the resistances of metal2 contact to metals and poly Si have lower contact resistance. But the condition of AC bias power did not satisfied low meta12 contacts resistance for metall and poly Si simultaneously. The R-square of ststistical analysis was 0.98 for resistances of meta12 contact to poly Si and 0.87 for resistances of meta12 contact to metall.