Browse > Article
http://dx.doi.org/10.5714/CL.2013.14.3.171

Reduction of metal-graphene contact resistance by direct growth of graphene over metal  

Hong, Seul Ki (Department of Electrical Engineering, Korea Advanced Institute of Science and Technology)
Song, Seung Min (Department of Electrical Engineering, Korea Advanced Institute of Science and Technology)
Sul, Onejae (Department of Electrical Engineering, Korea Advanced Institute of Science and Technology)
Cho, Byung Jin (Department of Electrical Engineering, Korea Advanced Institute of Science and Technology)
Publication Information
Carbon letters / v.14, no.3, 2013 , pp. 171-174 More about this Journal
Abstract
The high quality contact between graphene and the metal electrode is a crucial factor in achieving the high performance of graphene transistors. However, there is not sufficient research about contact resistance reduction methods to improve the junction of metal-graphene. In this paper, we propose a new method to decrease the contact resistance between graphene and metal using directly grown graphene over a metal surface. The study found that the grown graphene over copper, as an intermediate layer between the copper and the transferred graphene, reduces contact resistance, and that the adhesion strength between graphene and metal becomes stronger. The results confirmed the contact resistance of the metal-graphene of the proposed structure is nearly half that of the conventional contact structure.
Keywords
graphene; contact resistance; chemical vapor deposition;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field effect in atomically thin carbon films. Science, 306, 666 (2004). http://dx.doi.org/10.1126/science.1102896.   DOI   ScienceOn
2 Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS. Detection of individual gas molecules adsorbed on graphene. Nat Mater, 6, 652 (2007). http://dx.doi.org/10.1038/nmat1967.   DOI   ScienceOn
3 Murali R, Yang Y, Brenner K, Beck T, Meindl JD. Breakdown current density of graphene nanoribbons. Appl Phys Lett, 94, 243114 (2009). http://dx.doi.org/10.1063/1.3147183.   DOI   ScienceOn
4 Lee CH, Nishimura T, Saido N, Nagashio K, Kita K, Toriumi A. Record-high electron mobility in Ge n-MOSFETs exceeding Si universality. IEEE International Electron Devices Meeting, Baltimore, MD, 1 (2009). http://dx.doi.org/10.1109/IEDM.2009.5424323.   DOI
5 Farmer DB, Chiu HY, Lin YM, Jenkins KA, Xia F, Avouris P. Utilization of a buffered dielectric to achieve high field-effect carrier mobility in graphene transistors. Nano Lett, 9, 4474 (2009). http://dx.doi.org/10.1021/nl902788u.   DOI   ScienceOn
6 Lin YM, Dimitrakopoulos C, Jenkins KA, Farmer DB, Chiu HY, Grill A, Avouris P. 100-GHz transistors from wafer-scale epitaxial graphene. Science, 327, 662 (2010). http://dx.doi.org/10.1126/science.1184289.   DOI   ScienceOn
7 Lin YM, Jenkins KA, Valdes-Garcia A, Small JP, Farmer DB, Avouris P. Operation of graphene transistors at gigahertz frequencies. Nano Lett, 9, 422 (2008). http://dx.doi.org/10.1021/nl803316h.   DOI   ScienceOn
8 Xia F, Mueller T, Golizadeh-Mojarad R, Freitag M, Lin YM, Tsang J, Perebeinos V, Avouris P. Photocurrent imaging and efficient photon detection in a graphene transistor. Nano Lett, 9, 1039 (2009). http://dx.doi.org/10.1021/nl8033812.   DOI   ScienceOn
9 Xia F, Perebeinos V, Lin YM, Wu Y, Avouris P. The origins and limits of metal-graphene junction resistance. Nat Nanotechnol, 6, 179 (2011). http://dx.doi.org/10.1038/nnano.2011.6.   DOI
10 Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee SK, Colombo L, Ruoff RS. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science, 324, 1312 (2009). http://dx.doi.org/10.1126/science.1171245.   DOI   ScienceOn
11 Lee Y, Bae S, Jang H, Jang S, Zhu SE, Sim SH, Song YI, Hong BH, Ahn JH. Wafer-scale synthesis and transfer of graphene films. Nano Lett, 10, 490 (2010). http://dx.doi.org/10.1021/nl903272n.   DOI   ScienceOn
12 Danneau R, Wu F, Craciun MF, Russo S, Tomi MY, Salmilehto J, Morpurgo AF, Hakonen PJ. Shot noise in ballistic graphene. Phys Rev Lett, 100, 196802 (2008). http://dx.doi.org/10.1103/PhysRevLett.100.196802.   DOI   ScienceOn
13 Blake P, Yang R, Morozov SV, Schedin F, Ponomarenko LA, Zhukov AA, Nair RR, Grigorieva IV, Novoselov KS, Geim AK. Influence of metal contacts and charge inhomogeneity on transport properties of graphene near the neutrality point. Solid State Commun, 149, 1068 (2009). http://dx.doi.org/10.1016/j.ssc.2009.02.039.   DOI   ScienceOn
14 Venugopal A, Colombo L, Vogel EM. Contact resistance in few and multilayer graphene devices. Appl Phys Lett, 96, 013512 (2010). http://dx.doi.org/10.1063/1.3290248.   DOI   ScienceOn
15 Malec CE, Elkus B, Davidovic D. Vacuum-annealed Cu contacts for graphene electronics. Solid State Commun, 151, 1791 (2011). http://dx.doi.org/10.1016/j.ssc.2011.08.025.   DOI   ScienceOn
16 Yoon T, Shin WC, Kim TY, Mun JH, Kim TS, Cho BJ. Direct measurement of adhesion energy of monolayer graphene as-grown on copper and its application to renewable transfer process. Nano Lett, 12, 1448 (2012). http://dx.doi.org/10.1021/nl204123h.   DOI   ScienceOn