• 제목/요약/키워드: Metal 3D Printing

Search Result 133, Processing Time 0.025 seconds

3D-printing-based Combinatorial Experiment for Al-Si-Cu-Mg Alloys (금속 3D 프린팅 적층 제조 공정 기반 Al-Si-Cu-Mg 합금 조합 실험)

  • Song, Yongwook;Kim, Jungjoon;Park, Suwon;Choi, Hyunjoo
    • Journal of Powder Materials
    • /
    • v.29 no.3
    • /
    • pp.233-239
    • /
    • 2022
  • Aluminum alloys are extensively employed in several industries, such as automobile, aerospace, and architecture, owing to their high specific strength and electrical and thermal conductivities. However, to meet the rising industrial demands, aluminum alloys must be designed with both excellent mechanical and thermal properties. Computer-aided alloy design is emerging as a technique for developing novel alloys to overcome these trade-off properties. Thus, the development of a new experimental method for designing alloys with high-throughput confirmation is gaining focus. A new approach that rapidly manufactures aluminum alloys with different compositions is required in the alloy design process. This study proposes a combined approach to rapidly investigate the relationship between the microstructure and properties of aluminum alloys using a direct energy deposition system with a dual-nozzle metal 3D printing process. Two types of aluminum alloy powders (Al-4.99Si-1.05Cu-0.47Mg and Al-7Mg) are employed for the 3D printing-based combined method. Nine types of Al-Si-Cu-Mg alloys are manufactured using the combined method, and the relationship between their microstructures and properties is examined.

A Basic Study on the Manufacture of UHPC 3D stereoscopic panels using 3D Printer (3D 프린터를 활용한 UHPC 3D 입체패널 제작에 관한 기초적 연구)

  • Kim, Tae-Ik;Yoon, Ju-Yong;Choi, Byung-Keol;Park, Yong-Kyu;Lee, Dae Seek;Yoon, Gi-Won
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.154-155
    • /
    • 2021
  • Appearance finish is important for amorphous buildings to maximize amorphousness, and GFRC, glass, and metal are mostly used as exterior materials for amorphous buildings currently applied. However, the existing exterior materials showed limitations in amorphous expression, texture, and color expression. In this study, a 3D stereoscopic panel mold was manufactured using the FDM method, one of the 3D printing technologies, and 3D stereoscopic panel production was reviewed using Ultra High Performance Concrete (UHPC), which has excellent physical and mechanical performance and expression. In order to overcome the limitations of unstructured expression, a UHPC 3D stereoscopic panel using the FDM method, one of the 3D printing technologies, was manufactured. Unlike steel molds, FRP molds, and EPS molds, the FDM method can be applied to various materials, and complex shapes are implemented. If it is used using recyclable materials as well as PLA filaments used in the FDM method, it will overcome the limitations of amorphous expression and activate the production of 3D stereoscopic panels that have secured eco-friendliness.

  • PDF

Performance Test of Metal 3D Printed Micro Gas Turbine Engine Combustor (초소형 가스터빈 엔진용 금속 3D 프린팅 연소기 성능 시험)

  • Kim, Jaiho;Kim, Hyungmo;Park, Poomin;Rhee, Dongho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.6
    • /
    • pp.51-58
    • /
    • 2019
  • In this study, a set of performance tests on 3D-printed combustor components were carried out to investigate the performance of 3D-printed component and its feasibility for micro gas turbine engines. The test were conducted for four different equivalence ratios under two different engine operating conditions. The measurement results show that the tested combustor had a low total pressure loss coefficient and a uniform exit temperature distribution. However, the combustion efficiency values are less than 93.5% owing to the large amount of UHC and CO, which is considerably lower than a typical gas turbine engine combustor. The performance data obtained from the tests will be used for combustor performance improvements using 3D-printing technology.

Full mouth rehabilitation using 3D printed crowns and implant assisted removable partial denture for a crossed occlusion: a case report (3D 프린팅 금관과 임플란트 보조 국소의치를 이용한 엇갈린 교합의 전악 수복 증례)

  • Sung-Hoon Lee;Seong-Kyun Kim;Seong-Joo Heo;Jai-Young Koak;Ji-Man Park
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.61 no.4
    • /
    • pp.367-378
    • /
    • 2023
  • With the recent development of computer-aided design-computer-aided manufacturing technology and 3D printing technology, and the introduction of various digital techniques, the accuracy and efficiency of top-down definitive prosthetic restoration are increasing. In this clinical case, stable occlusion support was obtained through the placement of a total of 9 maxillary and mandibular posterior implants in patient with anterior-posterior crossed occlusion. The edentulous area of the maxillary anterior teeth, which showed a tendency of high resorption of the residual alveolar bone, was restored with a Kennedy Class IV implant assisted removable partial denture to restore soft tissue esthetics. Computed tomography guided surgery was used to place implants in the planned position, double scan technique was used to reflect the stabilized occlusion in the interim restoration stage to the definitive prostheses, and metal 3D printing was used to manufacture the coping and framework. This clinical case reports that efficient and predictable top-down full mouth rehabilitation was achieved using various digital technologies and techniques.

Measurement of minimum line width of an object fabricated by metal 3D printer using powder bed fusion type with stainless steal powder (스테인리스강을 사용한 분말 적층 용융 방식의 금속 3차원 프린터에서 제작된 물체의 최소 선폭 측정)

  • Son, BongKuk;Jeong, Youn Hong;Jo, Jae Heung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.346-351
    • /
    • 2018
  • Metal three-dimensional (3D) printing technologies are mainly classified as powder bed fusion (PBF) and direct energy deposition (DED) methods according to the method of application of a laser beam to metallic powder. The DED method can be used to fabricate fine and hard 3D metallic structures by applying a strong laser beam to a thin layer of metallic powder. The PBF method involves slicing 3D graphics to be a certain height, laminating metal powders, and making a 3D structure using a laser. While the DED method has advantages such as laser cladding and metallic welding, it causes problems with low density when 3D shapes are created. The PBF method was introduced to address the structural density issues in the DED method and makes it easier to produce relatively dense 3D structures. In this paper, thin lines were produced by using PBF 3D printers with stainless-steel powder of roughly $30{\mu}m$ in diameter with a galvano scanner and fiber-transferred Nd:YAG laser beam. Experiments were carried out to find the optimal conditions for the width of a line depending on the processing times, laser power, spot size, and scan speed. The optimal conditions were two scanning processes in one line structure with a laser power of 30 W, spot size of $28.7{\mu}m$, and scan speed of 200 mm/s. With these conditions, a minimum width of about $85.3{\mu}m$ was obtained.

Study on Effects of Direct Laser Melting Process Parameters on Deposition Characteristics of AlSi12 powders (AlSi12 분말의 직접 레이저 용융 적층 시 공정 조건에 따른 적층 특성에 관한 연구)

  • Seo, J.Y.;Yoon, H.S.;Lee, K.Y.;Shim, D.S.
    • Transactions of Materials Processing
    • /
    • v.27 no.5
    • /
    • pp.314-322
    • /
    • 2018
  • AlSi12 is a heat-resistant aluminum alloy that is lightweight, corrosion-resistant, machinable and attracting attention as a functional material in aerospace and automotive industries. For that reason, AlSi12 powder has been used for high performance parts through 3D printing technology. The purpose of this study is to observe deposition characteristics of AlSi12 powder in a direct energy deposition (DED) process (one of the metal 3D printing technologies). In this study, deposition characteristics were investigated according to various process parameters such as laser power, powder feed rate, scan speed, and slicing layer thickness. In the single track deposition experiment, an irregular bead shape and balling or humping of molten metal were formed below a laser power of 1,000 W, and the good-shaped bead was obtained at 1.0 g/min powder feed rate. Similar results were observed in multi-layer deposition. Observation of deposited height after multi-layer deposition revealed that over-deposition occurred at all conditions. To prevent over-deposition, slicing layer thickness was experimentally determined at given conditions. From these results, this study presented practical conditions for good surface quality and accurate geometry of deposits.

International Development Trend and Technical Issues of Metal Additive Manufacturing (금속 적층제조기술의 국내외 개발동향과 기술적 이슈)

  • Kang, Min-Cheol;Ye, Dea-Hee;Go, Geun-Ho
    • Journal of Welding and Joining
    • /
    • v.34 no.4
    • /
    • pp.9-16
    • /
    • 2016
  • Metal parts are produced by conventional methods such as casting, forging and cutting, extrusion, etc. However, nowadays, with additive manufacturing (AM), it is possible to directly commercialize by means of stacking of equipment to the 3D drawing and use of high precision tools such as laser source. Thus, drawing of materials is an important aspect in delivering good products. AM deals with production of lighter aircraft parts and few more three-dimensional molds, it wish to manufacture special medical parts and want to steadily expand the new market area. The cost of related equipment and materials are still expensive and difficult to obtain on a mass production. However, the ability to make changes and lead the innovation in the paradigm of traditional manufacturing process is still effective. In this paper, we introduce metal AM and the principles of the related devices, metal powder production process, and their application.

Tensile Test Results for Metal 3D Printed Specimens of Stainless Steel 316L Manufactured by PBF and DED (스테인리스강 316L 재질의 PBF 및 DED 방식 금속 3D프린팅 시편 인장 시험 결과)

  • Kyungnam Jang;Seunghan Yang
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.19 no.1
    • /
    • pp.11-19
    • /
    • 2023
  • Additive manufacturing technology, called as 3D printing, is one of fourth industrial revolution technologies that can drive innovation in the manufacturing process, and thus should be applied to nuclear industry for various purposes according to the manufacturing trend change in the future. In this paper, we performed tensile tests of 3D printed stainless steel 316L as-built specimens manufactured by two types of technology; DED (Directed Energy Deposition) and PBF (Powder Bed Fusion). Their mechanical properties (tensile strength, yield strength, elongation and reduction of area) were compared. As a result of comparison, the mechanical properties of the PBF specimens were slightly better than those of DED specimens. In the same additive type of specimens, the tensile and yield strength of specimens in the X and Y direction were higher than those in the Z direction, but the elongation and ROA were lower.

Effects and Application Cases of Injection Molds by using DED type Additive Manufacturing Process (DED방식의 적층가공을 통한 금형으로의 응용사례 및 효과)

  • Kim, Woosung;Hong, Myungpyo;Kim, Yanggon;Suh, Chang Hee;Lee, Jongwon;Lee, Sunghee;Sung, Ji Hyun
    • Journal of Welding and Joining
    • /
    • v.32 no.4
    • /
    • pp.10-14
    • /
    • 2014
  • Laser aided Direct Metal Tooling(DMT) process is a kind of Additive Manufacturing processes (or 3D-Printing processes), which is developed for using various commercial steel powders such as P20, P21, SUS420, H13, D2 and other non-ferrous metal powders, aluminum alloys, titanium alloys, copper alloys and so on. The DMT process is a versatile process which can be applied to various fields like the mold industry, the medical industry, and the defense industry. Among of them, the application of DMT process to the mold industry is one of the most attractive and practical applications since the conformal cooling channel core of injection molds can be fabricated at the slightly expensive cost by using the hybrid fabrication method of DMT technology compared to the part fabricated with the machining technology. The main objectives of this study are to provide various characteristics of the parts made by DMT process compared to the same parts machined from bulk materials and prove the performance of the injection mold equipped with the conformal cooling channel core which is fabricated by the hybrid method of DMT process.