• 제목/요약/키워드: Metabolomics

검색결과 210건 처리시간 0.031초

The effects of dietary self-monitoring intervention on anthropometric and metabolic changes via a mobile application or paper-based diary: a randomized trial

  • Taiyue Jin;Gyumin Kang;Sihan Song;Heejin Lee;Yang Chen;Sung-Eun Kim;Mal-Soon Shin;Youngja H Park;Jung Eun Lee
    • Nutrition Research and Practice
    • /
    • 제17권6호
    • /
    • pp.1238-1254
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: Weight loss via a mobile application (App) or a paper-based diary (Paper) may confer favorable metabolic and anthropometric changes. SUBJECTS/METHODS: A randomized parallel trial was conducted among 57 adults whose body mass indices (BMIs) were 25 kg/m2 or greater. Participants randomly assigned to either the App group (n = 30) or the Paper group (n = 27) were advised to record their foods and supplements through App or Paper during the 12-week intervention period. Relative changes of anthropometries and biomarker levels were compared between the 2 intervention groups. Untargeted metabolic profiling was identified to discriminate metabolic profiles. RESULTS: Out of the 57 participants, 54 participants completed the trial. Changes in body weight and BMI were not significantly different between the 2 groups (P = 0.11). However, body fat and low-density lipoprotein (LDL)-cholesterol levels increased in the App group but decreased in the Paper group, and the difference was statistically significant (P = 0.03 for body fat and 0.02 for LDL-cholesterol). In the metabolomics analysis, decreases in methylglyoxal and (S)-malate in pyruvate metabolism and phosphatidylcholine (lecithin) in linoleic acid metabolism from pre- to post-intervention were observed in the Paper group. CONCLUSIONS: In the 12-week randomized parallel trial of weight loss through a App or a Paper, we found no significant difference in change in BMI or weight between the App and Paper groups, but improvement in body fatness and LDL-cholesterol levels only in the Paper group under the circumstances with minimal contact by dietitians or health care providers.

Profiling of endogenous metabolites and changes in intestinal microbiota distribution after GEN-001 (Lactococcus lactis) administration

  • Min-Gul Kim;Suin Kim;Ji-Young Jeon;Seol Ju Moon;Yong-Geun Kwak;Joo Young Na;SeungHwan Lee;Kyung-Mi Park;Hyo-Jin Kim;Sang-Min Lee;Seo-Yeon Choi;Kwang-Hee Shin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제28권2호
    • /
    • pp.153-164
    • /
    • 2024
  • This study aimed to identify metabolic biomarkers and investigate changes in intestinal microbiota in the feces of healthy participants following administration of Lactococcus lactis GEN-001. GEN-001 is a single-strain L. lactis strain isolated from the gut of a healthy human volunteer. The study was conducted as a parallel, randomized, phase 1, open design trial. Twenty healthy Korean males were divided into five groups according to the GEN-001 dosage and dietary control. Groups A, B, C, and D1 received 1, 3, 6, and 9 GEN-001 capsules (1 × 1011 colony forming units), respectively, without dietary adjustment, whereas group D2 received 9 GEN-001 capsules with dietary adjustment. All groups received a single dose. Fecal samples were collected 2 days before GEN-001 administration to 7 days after for untargeted metabolomics and gut microbial metagenomic analyses; blood samples were collected simultaneously for immunogenicity analysis. Levels of phenylalanine, tyrosine, cholic acid, deoxycholic acid, and tryptophan were significantly increased at 5-6 days after GEN-001 administration when compared with predose levels. Compared with predose, the relative abundance (%) of Parabacteroides and Alistipes significantly decreased, whereas that of Lactobacillus and Lactococcus increased; Lactobacillus and tryptophan levels were negatively correlated. A single administration of GEN-001 shifted the gut microbiota in healthy volunteers to a more balanced state as evidenced by an increased abundance of beneficial bacteria, including Lactobacillus, and higher levels of the metabolites that have immunogenic properties.

Dietary supplementation of Eucommia leaf extract to growing-finishing pigs alters muscle metabolism and improves meat quality

  • Zhenglei Shen;Chuxin Liu;Chuangye Deng;Qiuping Guo;Fengna Li;Qingwu W. Shen
    • Animal Bioscience
    • /
    • 제37권4호
    • /
    • pp.697-708
    • /
    • 2024
  • Objective: The objective of this study was to investigate the influence of dietary supplementation of Eucommia ulmoides leaf extract (ELE) on muscle metabolism and meat quality of pigs with and without pre-slaughter transportation. Methods: In a 43-day feeding experiment, a total of 160 pigs with an initial body weight 60.00±2.00 kg were randomly assigned into four groups in a completely randomized design with 10 replicates. Pigs in groups A and C were fed a basal diet and pigs in groups B and D were fed a basal diet supplemented with 0.5% ELE. Pigs were slaughtered with (group B and D) or without (group A and C) pre-slaughter transport. Muscle chemical composition, postmortem glycolysis, meat quality and muscle metabolome were analyzed. Results: Dietary ELE supplementation had no effect on the proximate composition of porcine muscle, but increased free phenylalanine, proline, citruline, norvaline, and the total free amino acids in muscle. In addition, dietary ELE increased decanoic acid and eicosapentaenoic acid, but decreased heptadecanoic acid, oleic acid, trans-oleic acid, and monounsaturated fatty acids in muscle. Meat quality measurement demonstrated that ELE improved meat water holding capacity and eliminated the negative effects of pre-slaughter transport on meat cooking yield and tenderness. Dietary ELE reduced muscle glycolytic potential, inhibited glycolysis and muscle pH decline in the postmortem conversion of muscle to meat and increased the activity of citrate synthase in muscle. Metabolomics analysis by liquid chromatographic tandem mass spectrometric showed that ELE enhanced muscle energy level, regulated AMP-activated protein kinase (AMPK) signaling, modulated glycogenolysis/glycolysis, and altered the metabolism of carbohydrate, fatty acids, ketone bodies, amino acids, purine, and pyrimidine. Conclusion: Dietary ELE improved meat quality and alleviated the negative effect of pre-slaughter transport on meat quality by enhancing muscle oxidative metabolism capacity and inhibiting glycolysis in postmortem muscle, which is probably involved its regulation of AMPK.

Systemic Optimization of Microalgae for Bioactive Compound Production

  • Kim, Jeong-Dong;Lee, Choul-Gyun
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제10권5호
    • /
    • pp.418-424
    • /
    • 2005
  • The complexity of the biological system/biological systems has been fascinating and challenging for a long time. With the advent of mathematical tools with various omics technology, systems biology was born and is already ubiquitous in every area of biology and biotechnology. Microalgal biotechnology is no exception in this new trend. As tens of microalgal genomes become publicly available on the Internet, vast amounts of data from genomics, transcriptomics, and proteomics are reported everyday. Though there has not yet been enough data gathered on microalgal metabolomics, the in silica models for relatively simple cyanobacteria or for organelles, such as chloroplasts, will appear presently. With the help of systems biology, a more in-depth understanding of microalgae will be possible. Consequently, most industrially-interested microalgae can be metabolically redesigned/reconfigured as cell factories. Microalgae will be served as the hosts in white biotechnology.

Comparison of Spectral Data of Metabolites Collected from Bruker and Varian 600 MHz Spectrometers

  • Kang, Woo-Young;Chae, Young-Kee
    • 한국자기공명학회논문지
    • /
    • 제13권1호
    • /
    • pp.7-14
    • /
    • 2009
  • The spectral data were collected from the two 600 MHz spectrometers from the two major manufacturers, Broker and Varian. The samples were prepared to create standard curves for quantitative measurements of metabolite concentrations. Instead of employing one-dimensional $^1H$ experiments, the two-dimensional $^1H-^{13}C$ HSQC experiments were performed for better separation of resonances. For some resonances, the high salt condition hindered the linear correlation between the intensity and actual metabolite concentration. Excluding overlapped ones, most resonances showed good linearity. Although the Varian spectrometer showed better linearity, both spectrometers were able to generate acceptable standard curves. From this data, we could identify resonances that could be used to better quantify the concentrations of the particular metabolites. With these standard curves, the quantitative measurements of the metabolites from the real samples will be facilitated.

NMR Metabolomic Profiles for Quality Control of Korean Green Tea (Camellia sinensis) Classified by the Plucking Season

  • Choi, Kwang-Ho;Park, Ji Su;Kim, Hyeon Su;Choi, Ye Hun;Jeon, Jun Hyeok;Lee, Joon-Hwa
    • 한국자기공명학회논문지
    • /
    • 제21권4호
    • /
    • pp.119-125
    • /
    • 2017
  • The plucking season of green tea leaves is one of the important parameters that decide their metabolic diversity, quality, and prices. The effects of plucking sghlwleasons on green tea metabolites were investigated through metabolite profiling by $^1H$ NMR spectroscopy. The orthogonal projection on latent structure-discriminant analysis (OPLS-DA) showed clear discriminations of green teas by three different grades depending on plucking seasons: Ujeon, Sejak, and Jungjak. These results suggested that the nine peak groups could be used for diagnostics for identification of high quality Ujeon grade of green tea.

Antifungal Cyclopeptolide from Fungal Saprophytic Antagonist Ulocladium atrum

  • Yun, Bong-Sik;Kwon, Eun-Mi;Kim, Jin-Cheol;Yu, Seung-Hun
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권7호
    • /
    • pp.1217-1220
    • /
    • 2007
  • The saprophytic fungus Ulocladium atrum Preuss is a promising biological control agent for Botrytis cinerea in greenhouse- and field-grown crops. However, despite its known potent antifungal activity, no antifungal substance has yet been reported. In an effort to characterize the antifungal substance from U. atrum, we isolated an antibiotic peptide. Based on extensive spectroscopic analyses, its structure was established as a cyclopeptolide with a high portion of N-methylated amino acids, and its $^1H$ and $^{13}C$ chemical shifts were completely assigned based on extensive 1D and 2D NMR experiments. Compound 1 exhibited potent antifungal activity against the plant pathogenic fungus Botrytis cinerea and moderate activity against Alternaria alternate and Magnaporthe grisea.

Advances in Systems Biology Approaches for Autoimmune Diseases

  • Kim, Ho-Youn;Kim, Hae-Rim;Lee, Sang-Heon
    • IMMUNE NETWORK
    • /
    • 제14권2호
    • /
    • pp.73-80
    • /
    • 2014
  • Because autoimmune diseases (AIDs) result from a complex combination of genetic and epigenetic factors, as well as an altered immune response to endogenous or exogenous antigens, systems biology approaches have been widely applied. The use of multi-omics approaches, including blood transcriptomics, genomics, epigenetics, proteomics, and metabolomics, not only allow for the discovery of a number of biomarkers but also will provide new directions for further translational AIDs applications. Systems biology approaches rely on high-throughput techniques with data analysis platforms that leverage the assessment of genes, proteins, metabolites, and network analysis of complex biologic or pathways implicated in specific AID conditions. To facilitate the discovery of validated and qualified biomarkers, better-coordinated multi-omics approaches and standardized translational research, in combination with the skills of biologists, clinicians, engineers, and bioinformaticians, are required.

Proteomics의 최근 연구 기술동향

  • 양혜정;권대영
    • 식품기술
    • /
    • 제18권1호
    • /
    • pp.3-15
    • /
    • 2005
  • 최근 들어 게놈기능연구는 주요국가의 새로운 국가적 연구표적으로 지정되면서 유전자기반 생물산업의 핵심으로 부각되고 있다. 이러한 발전은인간(2001년 2월 인간 게놈의 초안 발표)을 비롯한 생물체의 게놈구조가 규명되어 이 유전자구조정보를 web상에서 쉽게 알아낼 수 있는데서 비롯된다. 포스트게놈시대의 게놈기능연구를 총괄적으로 '기능유전체학 (Functional Genomics)'이라고하며 여기에는 핵산(DNA나 RNA)을 표적으로 게놈기능을 연구하는 genomics(유전체학, RNA발현을 대상으로 하는 transcriptomics(전사체학) 포함), 총체적인 단백체를 대상으로 유전자기능을 연구하는 proteomics(단백질체학) 및 대사물질을 대상으로 하는 metabolomics(대사체학), 이들 분야를 공통적으로 지원하는 bioinformatics(생물정보학)로 구분된다. 본 고에서는 프로테오믹스 분야를 중심으로 소개하고자 한다.

  • PDF

Toxicogenomics and Cell-based Assays for Toxicology

  • Tong, Weida;Fang, Hong;Mendrick, Donna
    • Interdisciplinary Bio Central
    • /
    • 제1권3호
    • /
    • pp.10.1-10.5
    • /
    • 2009
  • Toxicity is usually investigated using a set of standardized animal-based studies which, unfortunately, fail to detect all compounds that induce human adverse events and do not provide detailed mechanistic information of observed toxicity. As an alternative to conventional toxicology, toxicogenomics takes advantage of currently advanced technologies in genomics, proteomics, metabolomics, and bioinformatics to gain a molecular level understanding of toxicity and to enhance the predictive power of toxicity testing in drug development and risk/safety assessment. In addition, there has been a renewed interest, particularly in various government agencies, to prioritize and/or supplement animal testing with a battery of mechanistically informative in vitro assays. This article provides a brief summary of the issues, challenges and lessons learned in these fields and discuss the ways forward to further advance toxicology using these technologies.