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Abstract The saprophytic fungus Ulocladium atrum Preuss
is a promising biological control agent for Botrytis cinerea in
greenhouse- and field-grown crops. However, despite its
known potent antifungal activity, no antifungal substance has
yet been reported. In an effort to characterize the antifungal
substance from U. atrum, we isolated an antibiotic peptide.
Based on extensive spectroscopic analyses, its structure was
established as a cyclopeptolide with a high portion of N-
methylated amino acids, and its 'H and °C chemical shifts were
completely assigned based on extensive 1D and 2D NMR
experiments. Compound 1 exhibited potent antifungal activity
against the plant pathogenic fungus Botrytis cinerea and moderate
activity against Alternaria alternate and Magnaporthe grisea.

Keywords: Cyclopeptolide, Ulocladium atrum, antifungal
substance, biocontrol agent

Botrytis cinerea Pers. is a ubiquitous fungi that causes
economically significant diseases in field and greenhouse
vegetables, fruits, ornamentals, and other crops throughout
the world [1, 5]. The saprophytic fungus Ulocladium atrum
Preuss is a promising biological control agent for B. cinerea
in greenhouse- and field-grown crops [2, 3,4, 7,9, 13].
The biocontrol effect of U. atrum against B. cinerea is
based on both species interacting and effective suppression
of the pathogen’s sporulation in necrotic plant tissue [8,
10-12]. It has also been proposed that the production of
extracellular hydrolytic enzymes could assist in the biocontrol
of B. cinerea in necrotic plant tissues by U. atrum [2].
Despite its known significant antifungal activity, no antifungal
substance has yet been reported. Accordingly, this research
investigated the antifungal substance from the fermentation
broth of the fungus U. atrum and isolated a unique
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cyclopeptolide 1, which contained a high portion of N-
methylated amino acids. In an extensive literature search, 1
was identified as an antifungal substance against yeasts
and yeast-like fungi, but not against filamentous fungi [6].
Differently from the previous report, however, 1 exhibited
potent antifungal activity against plant pathogenic filamentous
fungi. In this paper, we report the isolation, structure
determination, complete 'H and "“C assignments, and
antifungal activity of 1.

Fermentation of Ulocladium atrum

The fungal saprophytic antagonist, U. atrum (CNU 9055
isolate), isolated earlier from tomato field soil, was used in
the present study. Three pieces of an actively growing
fungal mycelial mat (approx. 10x10 mm) were transferred
from a potato dextrose agar plate to 500-ml Erlenmeyer
flasks (totaling 4 1) containing 100 ml of sucrose 5.0%,
KH,PO, 0.5%, KNO; 1.0%, MgSO, 7H,0 0.25%, and FeCl,
0.002%, and the flasks were shaken on a rotary shaker
{150 rpm) at 25°C for 10 days.

Isolation of Antifungal Substance

By using antifungal activity-guided fractionation, 1 was
isolated from the fermentation broth of the fungus U. atrum.
The fermentation broth (4 1) was filtrated to eliminate the
mycelium, and then the filtrate was extracted twice with
two liters of ethyl acetate. The ethyl acetate-soluble portion
was concentrated under reduced pressure and subjected to
a column of silica gel eluting with CH,ClL,/MeOH (97:3, v/v).
An active fraction (850 mg) was rechromatographed on a
column of silica gel eluting with CH,Cl,:MeOH (93:7, v/v),
followed by Sephadex LH-20 column chromatography eluting
with CH,Cl,/MeOH (1:1, v/v) to afford 1 (85.5 mg).

Structure Determination of Antifungal Substance
Compound 1 was isolated as a colorless amorphous
crystalline, and its positive electron spray ionization (ESI)
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mass provided quasi-molecular ion peaks at m/z 1126.7
[M+H]" and m/z 1148.7 [M+Na]’, suggesting a molecular
mass of 1,125 daltons. The molecular formula of 1 was
established as Cs,HyN,O,, by high-resolution ESI mass
measurement (m/z 1148.6545 [M+Na]', -3.8 mmu) in
combination with 'H and ’C NMR data. Its UV absorption
at 277 nm implied the presence of aromatic functionality.
The above physicochemical properties, lipophilicity, and
the 'H and "C NMR spectra suggested that 1 was a cyclic
peptide, which was also supported by the positive reaction
of its hydrolysate (6 N HCl, 110°C, 24 h) to a ninhydrin
reagent.

The structure of 1 was determined by extensive one- and
two-dimensional NMR analyses. In the '"H NMR spectrum
measured at 700 MHz in CDCl,, aromatic methine protons

Table 1. 'H and >C NMR data of compound 1 in CD,0OD.*

assignable to a 1,4-disubstituted benzene moiety at & 7.00
(d, /=8.4 Hz) and 6.71 (d, /=8.4 Hz); three exchangeable
amide protons at & 7.50, 7.15, and 7.00 that were collapsed
on shaking with D,0; 10 a-methine protons between & 3.0
to 6.4; a methoxyl methyl singlet at & 3.79; five N-methyl
singlets at & 3.45, 3.00, 2.90, 2.79, and 2.48; and several
methylene and 11 methyl signals between 6 0.6 to 2.3 were
observed. Interestingly, although 1 is a peptidic compound
with a relatively large molecular mass, only three amide
protons were evident whereas several N-methyl signals were
observed. The "C NMR spectrum measured at 176 MHz
revealed the presence of 59 well-resolved carbons containing
two overlapped sp’ methines from a 1,4-disubstituted benzene
moiety. With the aid of the HMQC spectrum, these peaks
were established as 11 carbonyl carbons, one oxygenated

No. 5C SH No. dC SH
2-Hydroxypropanoic acid a 56.6 530 (1H, d, ~=11.1)
1 172.9 B 327 2.22 (1H, m)
2 67.1 5.47 (1H, q, J/=6.9) v (CH;) 15.2 0.95 (3H, d, J=6.6)
3 18.0 1.41 (1H, d, J=6.9) (CH,) 24.4 1.33 (1H, m)
homoPro 1.08 (1H, m)
o 46.4 5.67 (1H, t, J=7.1) 8- 10.0 0.92 (3H, t, J=7.5)
B 27.7 1.89 (1H, m) CcO 170.8
1.77 (1H, m) N(Me)lso (2)
¥ 18.6 2.21 (1H, m) NMe 41.4 3.45(3H, s)
1.66 (1H, m) o 74.6 3.12 (1H, d, J=11.6)
1) 25.0 1.94 (1H, m) B 33.8 2.72 (1H, m)
1.49 (1H, m) v (CH,) 17.7 1.08 (3H, d, J=6.5)
g€ 433 4.29 (1H, m) (CH,) 26.0 1.52 (1H, m)
3.65 (1H, m) 1.07 (IH, m)
CcO 171.3 ) 10.9 0.93 3H, t, /=7.1)
N(Me)Val (1) CcO 170.2
NMe 28.7 2.79 (3H, s) Gly
a 67.0 4.33 (1H, d, J/=10.5) NH 7.15 (1H, dd, J=5.8, 3.2)
B 26.0 2.45 (1H, m) o 41.0 4.05 (1H, dd, /=17.4, 5.8)
¥ 19.5 1.06 (3H, d, J=6.4) 3.47 (1H, dd, J/=17.4,3.2)
19.1 0.89 (3H, d, J=6.7) CcO 168.4
CO 167.8 N(Me)Val (2)
Val NMe 28.4 2.48 (3H, s)
NH 7.00 (1H, d, J=10.3) o 61.5 4.75 (1H, 4, J=11.0)
o 54.7  4.54(1H,t,J=10.3) B 26.6  2.15(1H, m)
B 29.1 2.10 (1H, m) v 18.7 0.87 (3H, d, J=6.7)
¥ 20.1 0.89 (3H, d, J=6.7) 18.5 0.69 (3H, d, J=6.7)
18.0 0.81 (3H, d, J=6.7) CcO 168.8
cO 170.7 O(Me)Tyr
N(Me)Asp NH 7.50 (1H, d, J/=9.9)
NMe 30.5 2.90 (3H, s) o 51.1 5.21 (1H, m)
o 52.1 6.36 (1H, dd, J=11.6, 5.4) B 33.7 3.26 (2H, m)
B 35.1 3.12 (1H, t, J=11.6) Y 129.8
2.89 (1H, dd, J=11.6, 5.4) b 130.2 7.00 (2H, d, /=8.4)
Y 172.0 € 113.1 6.71 (2H, d, J=8.4)
CcO 169.8 ¢ 158.1
NMe)lso (1) OCH, 55.3 3.79 (3H, s)
NMe 29.9 3.00 (3H, s) CO 170.5

*NMR data were measured at 700 MHz for proton and at 176 MHz for carbon.

°Proton resonance integral, multiplicity, and coupling constant (J=Hz) are in parentheses.
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Fig. 1. Structure of compound 1.

sp’ quaternary carbon (8 158.1), one sp’ quaternary carbon
(5 129.8), four sp® methines for 1,4-disubstituted benzene,
nine oxygen- or nitrogen-bearing methine carbons between
8 40-75, two nitrogen-bearing methylene carbons (6 43.3
and 41.0), one methoxy! methyl carbon at § 55.3, five
nitrogen-bearing methyl carbons (5 41.4, 30.5, 29.9, 28.7,
and 28.4), seven methylene and five methine carbons
between & 18-36, and 11 methyl carbons between & 10—
20. The 'H and *C NMR spectral data are summarized in
Table 1. Alkyl groups revealing the identity of component
amino acid residues were assigned from a combination of
the TOCSY and 'H-'H COSY spectra. Namely, the partial
fragments shown in Fig. 2 suggested the presence of one
mole of Ala (finally assigned as 2-hydroxypropanoic acid),
homoPro (or Lys), Asp (or Asn), Gly, and Tyr moieties;
two moles of Ile moiety; and three moles of Val moiety.
HomoPro, but not Lys, was determined by the HMBC
correlation from the o-methine proton at & 5.67 to the e-
methylene carbon at & 43.3. Methyltyrosine was established
by the long-range correlations from the B-protons at 8 3.26
to the carbons at & 129.8 and 130.2, and from the methoxy!
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Fig. 2. 'H-'H COSY, TOCSY, and HMBC correlations for
compound 1.
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methyl protons at & 3.79 to the quaternary carbon at
5 158.1. Aspartic acid, but not asparagine, was also assigned
by the process of elimination. The amino acid sequence of
1 was determined from HMBC correlations of the amide
proton and N-methyl protons of each amino acid with the
carbonyl carbon of an adjacent amino acid; namely, from
the a.-methine proton of homoPro at 6 5.67 to the carbonyl
carbon of HPA at 6 172.9 that was, in turn, correlated with
the methine proton of HPA at & 5.47; from the N-methyl
protons of N-Me-Val (1) at & 2.79 to the a-methine carbon
of N-Me-Val (1) and the carbonyl carbon of homoPro at &
171.3; from the amide proton at & 7.00 to the carbonyl
carbon of N-Me-Val (1) at 8 167.8; from the N-methyl
protons of N-Me-Asp at 5 2.90 to the a-methine carbon of
N-Me-Asp and the carbonyl carbon of Val at § 170.7; from
the N-methyl protons of N-Me-Ile (1) at 5 3.00 to the o-
methine carbon of N-Me-Ile (1) and the carbonyl carbon of
N-Me-Asp at 8 169.8; from the N-methyl protons of N-Me-
Ile (2) at 6 3.45 to the a-methine carbon of N-Me-lle (2)
and the carbonyl carbon of N-Me-Ile (1) at 6 170.8; from
the amide proton of Gly at 8 7.15 to the carbonyl carbon of
N-Me-lle (2) at 6 170.2; from the N-methyl protons of N-
Me-Val (2) at 8 2.48 to the a-methine carbon of N-Me-Val
(2) and the carbonyl carbon of Gly at & 168.4; and from the
amide proton of O-Me-Tyr at & 7.50 to the carbonyl carbon
of N-Me-Val (2) at 6 168.8, as shown in Fig. 2. From the
above results, the sequence of compound 1 was established
as  HPA-homoPro-NMeVal(1)-Val-NMeAsp-NMelle(1)-
NMelle(2)-Gly-NMeVal(1)-OMeTyr. Finally, the methine
proton of HPA at & 5.47 was correlated with the carbonyl
carbon of O-Me-Tyr at & 170.5, suggesting the planar
structure of 1 as shown. In an extensive literature survey, 1
was identified as a cyclopeptolide, which was isolated as
an antifungal substance from the fungus Seproria sp.
NRRL15761 [6]. Although its derivatives were previously
synthesized, the isolation, structure determination, and
complete 'H and "C chemical shift assignments of 1 are
reported for the first time in this paper. Compound 1 is a
unique cyclopeptolide with a high portion of N-methylated
lipophilic amino acid residues, which may contribute to its
extraordinary lipophilicity.

Antifungal Activity

Compound 1 has been reported as an antifungal substance
against yeasts and yeast-like fungi, but not against filamentous
fungi [6]. However, we found that 1 exhibited potent
antifungal activity against plant pathogenic filamentous
fungi. In particular, 1 exhibited specific and potent antifungal
activity against the plant pathogenic fungi Botrytis cinerea,
B. elliptica, Alternaria alternate, and Magnaporthe grisea
with an MIC of 33.3 uM, and moderate activity against
Colletotrichum acutatum and C. gloeosporioides with an
MIC of 100 uM. Compound 1 also inhibited the conidial
germination and growth of the germ tube of B. cinerea, ina
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dose-dependent manner. Compound 1, however, showed
no activity up to 100 uM against Fusarium oxysporum,
Phytophthora infestans, and Rhizoctonia solani.
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