• Title/Summary/Keyword: Metabolizing Enzyme

Search Result 223, Processing Time 0.028 seconds

Effect of the Constituents of Angelicae gigantis Radix on Hepatic Drug Metabolizing Enzymes (참당귀근 성분이 간의 약물대사효소에 미치는 효과)

  • Han, Jung-Mee;Lee, Ihn-Ran;Shin, Kuk-Hyun
    • Korean Journal of Pharmacognosy
    • /
    • v.27 no.4
    • /
    • pp.323-327
    • /
    • 1996
  • The ether soluble fraction of the roots of Angelicae gigantis Radix caused a significant prolongation of hexobarbital(HB) induced sleeping time in mice. Through systematic fractionation of the ether fraction monitored by bioassays, two pyranocoumarins, decursinol angelate and decursin were isolated as active principles. Decursin, as a main component, exhibited significant prolongation of HB-induced hypnosis as well as significant inhibition of hepatic microsomal drug metabolizing enzyme(DME) activities at relatively high dose which indicated that it is a weak DME inhibitor.

  • PDF

Effects of Extract and Isorhamnetin Glycoside from Brassica juncea on Hepatic Alcohol-Metabolizing Enzyme System in Rats

  • Hur, Jong-Moon;Park, Sang-Hyun;Choi, Jong-Won;Park, Jong-Cheol
    • Natural Product Sciences
    • /
    • v.18 no.3
    • /
    • pp.190-194
    • /
    • 2012
  • The effects of methanol extract of the leaves of Brassica juncea and its major component, isorhamnetin 3-O-${\beta}$-D-glucopyranoside on hepatic alcohol metabolizing enzymes were investigated. The methanol extract and isorhamnetin 3-O-${\beta}$-D-glucopyranoside supplementations increased the activities of microsomal ethanol oxidizing system and aldehyde dehydrogenase in a dose-dependent manner, and had mild effects on the activities of alcohol dehydrogenase and catalase. Isorhamnetin 3-O-${\beta}$-D-glucopyranoside alleviated the adverse effect of ethanol ingestion by enhancing the activities of alcohol oxidizing emzymes, microsomal ethanol oxidizing system and aldehyde dehydrogenase.

Effect of a Single Dichloromethane Administration on Drug Metabolizing Activity in Rats (랫트에서 이염화메탄 일회투여가 약물대사활성에 미치는 영향)

  • 윤혜은;김상겸;이희승;김영철
    • Toxicological Research
    • /
    • v.12 no.2
    • /
    • pp.265-270
    • /
    • 1996
  • Effects of a single administration of dichloromethane (DCM) on the hepatic drug metabollzing activity were determined using adult female rats. Rats were treated with DCM (3 mmol/kg, ip) and the disappearance of antipyrine (100 mg/kg, iv) or ethanol (2 g/kg, ip) from blood was measured. The blood concentration and half-life of antipyrine was not influenced by DCM administration. And DCM did not alter the blood concentration of ethanol measured for 240 min after the treatment. The effect of DCM treatment on in vitro cytochrome P-450-dependent enzyme activities was examined as well. No significant difference in either aniline hydroxylase or aminopyrine N-demethylase was observed in hepatic microsomal fractiorts of rats treated with DCM 24 hr prior to sacrifice. The present study indicates that acutely given DCM does not alter the metabolism of xenobiotics in vivo. The failure of DCM to alter the in vitro hepatic microsomal drug metabolizing activity was also noted.

  • PDF

Current Pharmacogenetics in Psychiatry (정신의학에서의 약물유전학 현황)

  • Kim, Il Bin;Lee, Yu Sang
    • Korean Journal of Biological Psychiatry
    • /
    • v.28 no.1
    • /
    • pp.1-6
    • /
    • 2021
  • Pharmacogenetics is opening a new era of precision medicine in psychiatry. Drug-metabolizing enzymes are characterized by genetic polymorphisms, which render a large portion of variability in individual drug metabolism. Dose adjustment based on pharmacogenetics knowledge is a first step to translate pharmacogenetics into clinical practice. However, diverse factors including cost-effectiveness should be addressed to provide clinical recommendation. To address current challenges in pharmacogenetics testing in psychiatry, this review provides an update regarding genotyping (SNP analysis, array, and next-generation sequencing), genotype-phenotype correlations, and cost-effectiveness. The current updates on pharmacogenetics in psychiatry will provide guidance for both clinician and researchers to have a consensus in harmonizing efforts to advance the pharmacogenetics field in a part of precision medicine in psychiatry.

Study of 3-Ketosteroid Dehydrogenase System Using Whole-cell-enzyme from Arthrobacter simplex

  • Park, Eun-Chung;Ryu, Dewey Doo-Young
    • YAKHAK HOEJI
    • /
    • v.21 no.3
    • /
    • pp.167-171
    • /
    • 1977
  • A new assay method for delta-l-dehydrogenated-3-ketoco-rticosteroid in the presence of proteinous material or whole-cell-enzyme and 3-ketocorticosteroid has been developed. This method makes use of the linear relationship between the ratio of absorbances at 265 nm and at 242 nm and the fractional concentration of delta-1-3-ketosteroid. Theoretical values were calculated based on the absorbances of proteinous material at fixed concentrations of the 3-ketosteroid and delta-1-dehydrogenated-3-ketosteroid. The values obtained experimentally showed good agreement with the values obtained experimentally showed good agreement with the values theoretically predicted. The new assay method developed for the steroid mixtiure containing proteinous material is of some practical importance. The use of such assay method enables one to determine the enzyme activity and the rate of enzyme reaction or conversion rather quickly, easily and accurately. By the use of this assay method, the reaction kinetics of whole-cell-enzyme has also been studied. It was found that it followed the simple Michaelis-Menten type enzyme kinetics. Also the reversibility of this reaction with actively metabolizing cell was examined. It was found that delta-l-dehydrogenated-3-ketosteroid could not be hydrogenated reversibly to 3-ketosteroid by this enzyme system.

  • PDF

Influence of Five Herbal Medicines on Cytochrome P450 3A4 Drug-Metabolizing Enzyme Activity (활혈거어약의 Cytochrome P450 3A4 효소활성에 미치는 영향)

  • Go, Jae-Eon;Hwang, Jin-Woo;Go, Ho-Yeon;Choi, You-Kyung;Park, Jong-Hyung;Ko, Seong-Gyu;Jun, Chan-Yong
    • The Journal of Korean Medicine
    • /
    • v.29 no.4
    • /
    • pp.104-113
    • /
    • 2008
  • Objectives: The aim of this study was to investigate the influence of five herbal medicines on cytochrome P450 (CYP) 3A4 drug-metabolizing enzymes in human liver microsomes. Methods: By using of human liver microsomes, we extracted Cnidium officinale Makino, Rhus verniciflua Stokes, Prunus persica Batsch, Corydalis remota Fisch, Carthamus tinctorius Linne, which are called Hwalhyulgeoouhyak(活血祛瘀藥). Then they were incubated and measured for relative enzyme activity under incubation conditions compared to ketoconazole, which is known as a representative inhibitor of CYP 3A4. Results: We showed that all of five traditional herbal medicines had no inhibition effect of CYP 3A4 at 10, 20, 30, 40, and 50${\mu}g/m{\ell}$ doses in human liver microsomes, although Rhus verniciflua Stokes (RVS) showed a little inhibition as about 95% enzyme activity of control. However, this result was not enough to prove that RVS has a CYP 3A4 inhibition effect. Moreover, we can't confirm that those rates have significant induction effect on CYP 3A4. Conclusions: The result of this study could support that those herbal medicines are more reliable than chemical drugs, even if this is a basic step to prove that result.

  • PDF

Effect of Fruit-Vegetable Juices Containing Angelica keiskei on Alcohol Metabolizing Enzyme Activities in vitro (신선초를 혼합한 과채주스의 알코올 대사 효소 활성에 미치는 영향)

  • Kim, Min-Ju;Lim, Sang-Wook;Ahn, Hye-Jin;Jun, Junggyu;Kang, Min-Jung
    • KSBB Journal
    • /
    • v.31 no.1
    • /
    • pp.8-13
    • /
    • 2016
  • Excessive alcohol consumption can cause hangover symptoms, such as headache, drowsiness, dizziness, gastrointestinal distress, and anxiety. The aim of this study was to investigate alcohol metabolizing enzyme activities and antioxidant activities of fruit-vegetable juices containing Angelica keiskei prepared using a low speed masticating juicer in vitro. The acceleration rate of alcohol dehydrogenase (ADH) by A. keiskei-cherry tomato juice (ACJ) and A. keiskei-green grape juice (AGJ) were $163.8{\pm}4.3%$ and $148.2{\pm}6.9%$, respectively. The acceleration rate of aldehyde dehydrogenase (ALDH) by ACJ and AGJ were $185.6{\pm}9.5%$ and $161.1{\pm}4.8%$, respectively. Total polyphenol of ACJ and AGJ were $111.1{\pm}1.6mg/dL$ and $100.8{\pm}2.9mg/dL$, respectively. DPPH radical scavenging activities of ACJ and AGJ were $62.0{\pm}0.5%$ and $61.3{\pm}0.4%$, respectively. Thus, these results indicate that alcohol degrading enzyme activities can be enhanced by fruitvegetable juices containing A. keiskei.

Biological Activities of Lysimachiae Herba I. -Effects of the Pretreatment of Lysimachiae Herba on the Enzyme Activities in Galactosamine-intoxicated Rats- (금전초(金錢草) 성분의 생리활성 I. -금전초의 추출분획의 전처리가 갈락토사민 중독 흰쥐의 대사효소활성에 미치는 영향-)

  • Kim, Hoe-Young;Kim, Soon-Shin;Lee, Chung-Kyu;Choi, Jong-Won
    • Korean Journal of Pharmacognosy
    • /
    • v.27 no.1
    • /
    • pp.58-64
    • /
    • 1996
  • Pretreatment of the methanolic extract(250-500mg/kg, p.o., two weeks) of Lysimachiae Herba prevented the elevation of ALT and AST activities in galactosamine(GalN, 400 mg/kg, i.p.) intoxicated rats. Its five fractions, especially the ethyl acetate fraction, also showed significant preventing actions on damaged liver metabolizing enzyme functions by GalN intoxication.

  • PDF

Inhibitory Effects of Angiotensin Converting Enzyme and α-Glucosidase, and Alcohol Metabolizing Activity of Fermented Omija (Schizandra chinensis Baillon) Beverage (오미자 발효음료의 알코올 분해능과 Angiotensin Converting Enzyme 및 α-Glucosidase 저해효과)

  • Cho, Eun-Kyung;Cho, Hea-Eun;Choi, Young-Ju
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.5
    • /
    • pp.655-661
    • /
    • 2010
  • The nutraceutical role of fermented omija (Schizandra chinensis) beverage (FOB) was determined through the analysis of fibrinolytic and alcohol metabolizing activities, nitrite scavenging activity, and angiotensin converting enzyme and $\alpha$-glucosidase inhibitory effects. Firstly, FOB increased fibrinolytic activity in a dose-dependent manner and indicated angiotensin converting enzyme inhibitory activity of 94.8% at 20% FOB (0.6 mg/mL). In addition, the inhibitory activities of FOB on $\alpha$-amylase and $\alpha$-glucosidase were determined to be 100% at 100% FOB (3 mg/mL) and 49% at 60% FOB (1.8 mg/mL), respectively. Nitrite scavenging activity of FOB was about 96.1%, 72.3%, and 68.3% on pH 1.2, 3.0, and 6.0 at 100% FOB, respectively. To determine influence of FOB on alcohol metabolism, the generating activities of reduced-nicotinamide adenine dinucleotide (NADH) by alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH) were measured. Facilitating rate of ADH activity was 70.3% at 50% FOB, but ALDH activity was not affected. These results revealed that FOB has a strong alcohol metabolizing activity, and fibrinolytic and nitrite scavenging activities and exhibits the angiotensin converting enzyme, $\alpha$-amylase, and $\alpha$-glucosidase inhibitory activities.

Effect of Benzoyl Peroxide on the Activity of Drug-metabolizing Enzyme System and Lipid Peroxidation in Rats (Benzoyl peroxide가 흰쥐의 지질과산화현상에 미치는 영향)

  • Lee, H.W.;Rhee, K.S.;Hong, S.U.
    • The Korean Journal of Pharmacology
    • /
    • v.18 no.1
    • /
    • pp.55-63
    • /
    • 1982
  • Lipid peroxidation is the reaction of oxidative deterioration of polyunsaturated lipids and this peroxidation involves the direct reaction of oxygen and lipid to form free radical intermediates, which can lead to autocatalysis. As results of the extensive studies on the lipid peroxidation by many authors, the relationship between lipid peroxidation and the drug metabolizing system as well as the actions of free radicals on the peroxidation was reasonably well known. For a long time, the mechanism of hepatotoxicity of $CCl_4$ was not clearly understood. However, it is now quite well established that $CCl_4$ is activated in vivo to a free radical which is a highly reactive molecule. Therefore, lipid peroxidation which induces the reduction of cytochrome P-450 and aminopyrine demethylase activity is known as decisive event of $CCl_4$ hepatotoxicity. On the other hand, it was also reported that singlet molecular oxygen produces lipid peroxidation in liver microsomes. In this study the effects of benzoyl peroxide on the lipid peroxidation and drug-metabolizing enzyme were examined. Benzoyl peroxide mixed with starch and phosphates etc. is usually used as a food additive for flour bleaching and maturing purpose because of its oxidative property. Albino rats were used for the experimental animals. Benzoyl peroxide was suspended in soybean oil and sesame oil and administered intraperitoneally or orally. TBA value and aminopyrine demethylase activity were determined in liver microsomal fraction and serum. The results were summerized as following. 1) Body weights of animals administered benzoyl peroxide suspension were decreased while that of oil administered group were increased. 2) The activity of aminopyrine demethylase was generally decreased in animals administered oil suspension of benzoyl peroxide. Furthermore, the marked reduction of the enzyme activity was observed in animals administered benzoyl peroxide intraperitoneally. 3) Generally, microsomal TBA values as well as serum TBA were significantly elevated in benzoyl peroxide group in comparison with the control group. However, the more remarkable increase of serum TBA than microsomal TBA was observed in animals administered orally for 6 days. 4) Specifically, the changing pattern of TBA value was notable in serum rather than in liver microsome by intraperitoneal administration of benzoyl peroxide.

  • PDF