• Title/Summary/Keyword: Metabolism study

Search Result 3,781, Processing Time 0.027 seconds

The Effect of Dietary Calcium and Phosphate Levels on Calcium and Bone Metabolism in Rats (흰쥐에서 칼슘과 인의 섭취비율이 체내 칼슘 및 골격대사에 미치는 영향)

  • 정혜경
    • Journal of Nutrition and Health
    • /
    • v.30 no.7
    • /
    • pp.813-824
    • /
    • 1997
  • This study was designed to investigate the effect of dietary calcium and phosphate levels on calcium and bone metabolism in rats. The rats were divided into six groups and each of the groups was fed diets with different Ca/P ratios. The experimental periods were 5 weeks . There was no significant different difference in dietary intake, body weight gain, and organ weight among the groups with different calcium and phosphate intake levels. Fecal calcium excretion was not significantly different among the groups, but urinary calcium excretion was increased by the increase in Ca/P ratio. Fecal phosphate excretion was not different but urinary phosphate excretion was increased by the increase in dietary phosphate intake. There was no significant difference in serum alkaline phophatase activity and urinary hydroxyproline levels were not significantly different among the groups. The low calcium-high phosphate(0.25Ca-1.2% P) group showed the lowest total calcium content in femur and scapula. This may be due to it having the lowest Ca/P ratio among groups. The low calcium-high phosphate(0.2%Ca-1.2%P) group showed that mandible is almost lost and osteolyzed Harversian canal was expanded in femur. Results suggest that phosphate intake affects calcium and bone metabolism more with inadequate calcium nutrition that with adequate calcium intake. Thus , for normal bone growth and metabolism , adequate calcium intake and/or high Ca/P ratio are important.

  • PDF

Effect of Culture Conditions and Signal Peptide on Production of Human Recombinant N-Acetylgalactosamine-6-Sulfate Sulfatase in Escherichia coli BL21

  • Hernandez, Alejandra;Velasquez, Olga;Leonardi, Felice;Soto, Carlos;Rodriguez, Alexander;Lizaraso, Lina;Mosquera, Angela;Bohorquez, Jorge;Coronado, Alejandra;Espejo, Angela;Sierra, Rocio;Sanchez, Oscar F.;Almeciga-Diaz, Carlos J.;Barrera, Luis A.
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.5
    • /
    • pp.689-698
    • /
    • 2013
  • The production and characterization of an active recombinant N-acetylgalactosamine-6-sulfate sulfatase (GALNS) in Escherichia coli BL21(DE3) has been previously reported. In this study, the effect of the signal peptide (SP), inducer concentration, process scale, and operational mode (batch and semi-continuous) on GALNS production were evaluated. When native SP was presented, higher enzyme activity levels were observed in both soluble and inclusion bodies fractions, and its removal had a significant impact on enzyme activation. At shake scale, the optimal IPTG concentrations were 0.5 and 1.5 mM for the strains with and without SP, respectively, whereas at bench scale, the highest enzyme activities were observed with 1.5 mM IPTG for both strains. Noteworthy, enzyme activity in the culture media was only detected when SP was presented and the culture was carried out under semi-continuous mode. We showed for the first time that the mechanism that in prokaryotes recognizes the SP to mediate sulfatase activation can also recognize a eukaryotic SP, favoring the activation of the enzyme, and could also favor the secretion of the recombinant protein. These results offer significant information for scaling-up the production of human sulfatases in E. coli.

Differential Expression of Metabolism-related Genes in Liver of Diabetic Obese Rats

  • Seo, Eun-Hui;Park, Eun-Jin;Park, Mi-Kyoung;Kim, Duk-Kyu;Lee, Hye-Jeong;Hong, Sook-Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.2
    • /
    • pp.99-103
    • /
    • 2010
  • The Otsuka Long-Evans Tokushima Fatty (OLETF) rat, a model of spontaneous type 2 diabetes (T2D), develops hyperglycemic obesity with hyperinsulinemia and insulin resistance after the age of 25 weeks, similar to patients with noninsulin-dependent diabetes mellitus (DM). In the present study, we determined whether there are differences in the pattern of gene expression related to glucose and lipid metabolism between OLETF rats and their control counterparts, Long-Evans Tokushima (LETO) rats. The experiment was done using 35-week-old OLETF and LETO rats. At week 35 male OLETF rats showed overt T2D and increases in blood glucose, plasma insulin, plasma triglycerides (TG) and plasma total cholesterol (TC). Livers of diabetic OLETF and LETO rats also showed differences in expression of mRNA for glucose and lipid metabolism related genes. Among glucose metabolism related genes, GAPDH mRNA was significantly higher and FBPase and G6Pase mRNA were significantly lower in OLETF rats. For lipid metabolism related genes, HMGCR, SCD1 and HL mRNA were substantially higher in OLETF rats. These results indicate that gluconeogenesis in OLETF rats is lower and glycolysis is higher, which means that glucose metabolism might be compensated for by a lowering of the blood glucose level. However, lipid synthesis is increased in OLETF rats so diabetes may be aggravated. These differences between OLETF and LETO rats suggest mechanisms that could be targeted during the development of therapeutic agents for diabetes.

Characterization of Deoxypodophyllotoxin Metabolism in Rat Liver Microsomes

  • Lee, Sang-Kyu;Jun, In-Hye;Kang, Mi-Jeong;Jeon, Tae-Won;Kim, Ju-Hyun;Seo, Young-Min;Shin, Sil;Choi, Jae-Ho;Jeong, Hye-Gwang;Lee, Seung-Ho;Jeong, Tae-Cheon
    • Biomolecules & Therapeutics
    • /
    • v.16 no.3
    • /
    • pp.190-196
    • /
    • 2008
  • Deoxypodophyllotoxin (DPT) is a medicinal herb product isolated from Anthriscus sylvestris. DPT possesses beneficial activities in regulating immediate-type allergic reaction and anti-inflammatory activity through the dual inhibition of cyclooxygenase-2 and 5-lipoxygenase. In the present study, the metabolism of DPT was further characterized in rat liver microsomes isolated from male Sprague Dawley rats. The metabolism of DPT was NADPH-dependent. In addition, when liver microsomes were incubated with SKF-525A, a well-known CYP inhibitor, in the presence of $\beta$-NADPH, the metabolism of DPT was significantly inhibited. Using enriched rat liver microsomes, the anticipated isoforms of cytochrome P450s (CYPs) in the metabolism of DPT were partially characterized. Phenobarbital-induced microsomes increased in the formation of metabolite M1. The metabolite M3 was only produced in the enriched microsomes isolated from dexamethasone-treated rats. The results indicated that the metabolism of DPT would be CYP-dependent and that CYP2B and CYP3A might be important in the metabolism of DPT in rats.

Glucocorticoid treatment independently affects expansion and transdifferentiation of porcine neonatal pancreas cell clusters

  • Kim, Ji-Won;Sun, Cheng-Lin;Jeon, Sung-Yoon;You, Young-Hye;Shin, Ju-Young;Lee, Seung-Hwan;Cho, Jae-Hyoung;Park, Chung-Gyu;Yoon, Kun-Ho
    • BMB Reports
    • /
    • v.45 no.1
    • /
    • pp.51-56
    • /
    • 2012
  • The purpose of this study was to determine the effects of duration and timing of glucocorticoid treatment on the expansion and differentiation of porcine neonatal pancreas cell clusters (NPCCs) into ${\beta}$-cells. After transplantation of NPCCs, the ductal cyst area and ${\beta}$-cell mass in the grafts both showed positive and negative correlations with duration of dexamethasone (Dx) treatment. Pdx-1 and HNF-3${\beta}$ gene expression was significantly downregulated following Dx treatment, whereas PGC-1${\alpha}$ expression increased. Pancreatic duct cell apoptosis significantly increased following Dx treatment, whereas proliferation did not change. Altogether, transdifferentiation of porcine NPCCs into ${\beta}$-cells was influenced by the duration of Dx treatment, which might have been due to the suppression of key pancreatic transcription factors. PGC-1${\alpha}$ plays an important role in the expansion and transdifferentiation of porcine NPCCs, and the initial 2 weeks following transplantation of porcine NPCCs is a critical period in determining the final ${\beta}$-cell mass in grafts.

Role of plastidic glucose transporter in source metabolism of Arabidopsis

  • Lee, Youn-Hyung;Hong, Soon-Won;Lee, Jang-Wook;Bhoo, Seong-Hee;Jeon, Jong-Seong;Hahn, Tae-Ryong
    • Proceedings of the Korean Society of Plant Biotechnology Conference
    • /
    • 2005.11a
    • /
    • pp.9-21
    • /
    • 2005
  • To study the biochemical and physiological role of the plastidic glucose transporter (pGlcT) in carbohydrate metabolism, we characterized transgenic plants with mutations in the pGlcT gene (GT), gt-1 and gt-2, as well double mutants of GT and the maltose transporter (MEX1) and GT and the triose phosphate/phosphate translocator (TPT), GT and the cytosolic fructose-1,6-bisphosphatase gene (cFBP), and MEX1 and TPT, gt-1/mex2, gt-1/tpt-2, gt-1/cfbp-1, mex1-1/tpt-2, respectively. Compared to the wild type, all mutants except the gt-1/cfbp-1 mutant lines displayed higher starch accumulation and higher levels of maltose. Starch accumulation is due to a decrease in starch turnover, leading to an imbalance between the rates of synthesis and degradation. Sucrose levels of gt alleles were higher than those in wild-type plants during the light period, suggesting possible nightly supplementation via the maltose transport pathway to maintain proper carbohydrate partitioning in the plant leaves. The gt plants displayed less growth retardation than mex1-1 mutant and gt-1/mex2 double mutant displayed accumulativesevere growth retardation as compared to individual gt-1 and mex1-1 mutants, implying that the maltose transporter-mediated pathway is a major route for carbohydrate partitioning at night. The gt-1/tpt-2, mex1-1/tpt-2 and gt-1/cfbp-1 double mutants had retarded growth and low chlorophyll content to differing degrees, indicating that photosynthetic capacity had diminished. Interestingly, the gt-1/tpt-2 line displayed a glucose-insensitive phenotype and higher germination rates than wild type, suggesting its involvement not only in carbon partitioning, but also in the sugar signaling network of the pGlcT and TPT.

  • PDF

Both sitagliptin analogue & pioglitazone preserve the β-cell proportion in the islets with different mechanism in non-obese and obese diabetic mice

  • Yeom, Jin-A;Kim, Eun-Sook;Park, Heon-Seok;Ham, Dong-Sik;Sun, Cheng-Lin;Kim, Ji-Won;Cho, Jae-Hyoung;Yoon, Kun-Ho
    • BMB Reports
    • /
    • v.44 no.11
    • /
    • pp.713-718
    • /
    • 2011
  • In this study, the effects of sitagliptin analogue (SITA) or pioglitazone (PIO) treatment on glucose homeostasis and ${\beta}$-cell dynamics in animal models of type 2 diabetes-Akita and db/db mice were evaluated. After 4-6 weeks of treatment, both SITA and PIO were shown to lower non-fasting glucose levels and reduced glycemic excursion in the intraperitoneal glucose tolerance test. In addition, both drugs preserved normal islet structure and the proportion of ${\beta}$-cells in the islets. Compared to the controls, SITA treatment induced a higher ${\beta}$-cell proliferation rate in Akita mice and a lower rate of apoptosis in db/db mice, whereas PIO treatment induced a lower rate of apoptosis in db/db mice and reduced proliferation rates in Akita mice. In conclusion, both SITA and PIO appear to exert some beneficial effects on the islet structure in addition to glycemic control via different mechanisms that involve ${\beta}$-cell dynamics in Akita and db/db mice.

Characterization of Arabidopsis RopGEF family genes in response to abiotic stresses

  • Shin, Dong Ho;Kim, Tae-Lim;Kwon, Yong-Kook;Cho, Man-Ho;Yoo, Jihye;Jeon, Jong-Seong;Hahn, Tae-Ryong;Bhoo, Seong Hee
    • Plant Biotechnology Reports
    • /
    • v.3 no.3
    • /
    • pp.183-190
    • /
    • 2009
  • Rho-related GTPase of plants (ROP) plays an important role in plant growth and development as a signaling protein. Plant RopGEFs are recently identified ROP activator proteins in Arabidopsis. In this study, we cloned 14 RopGEFs in Arabidopsis and characterized their expression patterns in response to abiotic stresses. Fourteen RopGEF genes were categorized into three groups based on their amino acid homologies and molecular sizes. Most RopGEFs were expressed predominantly in flower but some RopGEFs displayed a tissue-specific expression pattern. RopGEF1, 4, 5, and 11 were expressed in all tissues including root and leaves whereas RopGEF7, 8, 9, and 13 were expressed only in flowers. The transcript levels of 14 RopGEFs were changed significantly depending upon abiotic stresses such as cold, heat, drought and salts. RopGEF5 transcription was up-regulated by salt and drought treatment but down-regulated by heat. RopGEF14 transcript level was also increased by salt but decreased by heat stress. The transcript levels of RopGEF1, 7, 9, and 12 were enhanced in response to heat stress but showed no changes in response to cold stresses. Drought stress activated Group 3 RopGEFs such as RopGEF5 and 7. Taken together, 14 RopGEFs are responding to the abiotic stresses individually or as a group.

Investigation of Effective Korean Herbal Medicine for Psoriasis - Focusing on Lipid Metabolism - (건선에 효과적인 한약 처방 탐색 - 지질 대사를 중심으로)

  • Han, Chang-Yi;Kim, Jundong;Seo, Gwang-Yeel;Kim, Kyu-Seok;Kim, Yoon-Bum
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.34 no.3
    • /
    • pp.70-79
    • /
    • 2021
  • Objectives : The purpose of this study is to investigate the possibility of using herbal medicine for the management of psoriasis focusing on lipid metabolism. Methods : We reviewed studies about pathophysiology, and medical treatment of psoriasis, the relationship between psoriasis and metabolic syndrome and lipid metabolism, and herbal medicine on Pubmed and Google scholar. Results : Psoriasis is a chronic multi-organ inflammatory disease not limited to skin, and steroids, immuno-suppressants, and biological agents are used. It is known that psoriasis and metabolic syndrome act as mutual risk factors, and lipid metabolism are involved in psoriasis. The effects of various single herbal preparations and complex herbal extract, decoction on improving lipid metabolism have been consistently reported, and there was an improvement of psoriatic skin lesions and improvement of blood lipid levels through herbal medicine. Conclusions : Herbal medicine research in psoriasis has focused on the anti-inflammatory effect and the suppression effect of certain immune mediators. However, considering that psoriasis is affected by lipid metabolism and side effects of Western medicines, the use of herbal medicines for the purpose of controlling lipid metabolism in psoriasis is useful in aspects of reducing side effects of concurrent Western medicine, improving the severity of psoriasis, and managing metabolic risk factors.

Ginsenosides Rg1 regulate lipid metabolism and temperature adaptation in Caenorhabditis elegans

  • Hao Shi ;Jiamin Zhao ;Yiwen Li ;Junjie Li ;Yunjia Li;Jia Zhang ;Zhantu Qiu ;Chaofeng Wu ;Mengchen Qin ;Chang Liu ;Zhiyun Zeng ;Chao Zhang ;Lei Gao
    • Journal of Ginseng Research
    • /
    • v.47 no.4
    • /
    • pp.524-533
    • /
    • 2023
  • Background: Obesity is a risk factor for aging and many diseases, and the disorder of lipid metabolism makes it prominent. This study aims to investigate the effect of ginsenoside Rg1 on aging, lipid metabolism and stress resistance Methods: Rg1 was administered to Caenorhabditis elegans (C. elegans) cultured in NGM or GNGM. The lifespan, locomotory activity, lipid accumulation, cold and heat stress resistance and related mRNA expression of the worms were examined. Gene knockout mutants were used to clarify the effect on lipid metabolism of Rg1. GFP-binding mutants were used to observe the changes in protein expression Results: We reported that Rg1 reduced lipid accumulation and improved stress resistance in C. elegans. Rg1 significantly reduced the expression of fatty acid synthesis-related genes and lipid metabolism-related genes in C. elegans. However, Rg1 did not affect the fat storage in fat-5/fat-6 double mutant or nhr-49 mutant. Combined with network pharmacology, we clarified the possible pathways and targets of Rg1 in lipid metabolism. In addition, Rg1-treated C. elegans showed a higher expression of anti-oxidative genes and heat shock proteins, which might contribute to stress resistance Conclusion: Rg1 reduced fat accumulation by regulating lipid metabolism via nhr-49 and enhanced stress resistance by its antioxidant effect in C. elegans.