Browse > Article
http://dx.doi.org/10.4014/jmb.1211.11044

Effect of Culture Conditions and Signal Peptide on Production of Human Recombinant N-Acetylgalactosamine-6-Sulfate Sulfatase in Escherichia coli BL21  

Hernandez, Alejandra (Department of Chemical Engineering, Universidad de Los Andes)
Velasquez, Olga (Department of Chemical Engineering, Universidad de Los Andes)
Leonardi, Felice (Department of Chemical Engineering, Universidad de Los Andes)
Soto, Carlos (Institute for the Study of Inborn Errors of Metabolism, Pontificia Universidad Javeriana)
Rodriguez, Alexander (Institute for the Study of Inborn Errors of Metabolism, Pontificia Universidad Javeriana)
Lizaraso, Lina (Institute for the Study of Inborn Errors of Metabolism, Pontificia Universidad Javeriana)
Mosquera, Angela (Institute for the Study of Inborn Errors of Metabolism, Pontificia Universidad Javeriana)
Bohorquez, Jorge (Department of Chemical Engineering, Universidad de Los Andes)
Coronado, Alejandra (Department of Chemical Engineering, Universidad de Los Andes)
Espejo, Angela (Institute for the Study of Inborn Errors of Metabolism, Pontificia Universidad Javeriana)
Sierra, Rocio (Department of Chemical Engineering, Universidad de Los Andes)
Sanchez, Oscar F. (Department of Chemical Engineering, Universidad de Los Andes)
Almeciga-Diaz, Carlos J. (Institute for the Study of Inborn Errors of Metabolism, Pontificia Universidad Javeriana)
Barrera, Luis A. (Institute for the Study of Inborn Errors of Metabolism, Pontificia Universidad Javeriana)
Publication Information
Journal of Microbiology and Biotechnology / v.23, no.5, 2013 , pp. 689-698 More about this Journal
Abstract
The production and characterization of an active recombinant N-acetylgalactosamine-6-sulfate sulfatase (GALNS) in Escherichia coli BL21(DE3) has been previously reported. In this study, the effect of the signal peptide (SP), inducer concentration, process scale, and operational mode (batch and semi-continuous) on GALNS production were evaluated. When native SP was presented, higher enzyme activity levels were observed in both soluble and inclusion bodies fractions, and its removal had a significant impact on enzyme activation. At shake scale, the optimal IPTG concentrations were 0.5 and 1.5 mM for the strains with and without SP, respectively, whereas at bench scale, the highest enzyme activities were observed with 1.5 mM IPTG for both strains. Noteworthy, enzyme activity in the culture media was only detected when SP was presented and the culture was carried out under semi-continuous mode. We showed for the first time that the mechanism that in prokaryotes recognizes the SP to mediate sulfatase activation can also recognize a eukaryotic SP, favoring the activation of the enzyme, and could also favor the secretion of the recombinant protein. These results offer significant information for scaling-up the production of human sulfatases in E. coli.
Keywords
Morquio A; GALNS; signal peptide; sulfatase; recombinant enzyme; E. coli;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Almeciga-Diaz, C., A. M. Montano, S. Tomatsu, and L. Barrera. 2010. Adeno-associated virus gene transfer on Morquio A: Effect of promoters and sulfatase-modifying factor 1. FEBS J. 277: 3608-3619.   DOI   ScienceOn
2 Almeciga-Diaz, C., M. Rueda-Paramo, A. Espejo, O. Echeverri, A. Montano, S. Tomatsu, and L. Barrera. 2009. Effect of elongation factor $1{\alpha}$ promoter and SUMF1 over in-vitro expression of N-acetylgalactosamine-6-sulfate sulfatase. Mol. Biol. Rep. 36: 1863-1870.   DOI
3 Carlson, B. L., E. R. Ballister, E. Skordalakes, D. S. King, M. A. Breidenbach, S. A. Gilmore, et al. 2008. Function and structure of a prokaryotic formylglycine-generating enzyme. J. Biol. Chem. 283: 20117-20125.   DOI   ScienceOn
4 Amersham. 2002. GST Gene Fusion System - Handbook. Amersham Biosciences AB, Uppsala, Sweden.
5 Ausubel, F. M., R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, and K. Struhl. 1999. Short Protocols in Molecular Biology, 4th Ed. Wiley John & Sons Inc., Hoboken.
6 Bielicki, J., M. Fuller, X. Guo, C. Morri, J. Hopwood, and D. Anson. 1995. Expression, purification and characterization of recombinant human N-acetylgalactosamine-6-sulphatase. Biochem. J. 311: 333-339.
7 Chen, R. 2011. Bacterial expression systems for recombinant protein production: E. coli and beyond. Biotechnol. Adv. 30: 1102-1107.
8 Cordoba-Ruiz, H. A., R. A. Poutou-Pinales, O. Y. Echeverri-Pena, N. A. Algecira-Enciso, P. Landazuri, H. Saenz, and L. A. Barrera-Avellaneda. 2009. Laboratory scale production of the human recombinant iduronate 2-sulfate sulfatase-like from Pichia pastoris. Afr. J. Biotechnol. 8: 1786-1792.
9 Cosma, M., P. Pepe, I. Annunziata, R. Newbold, M. Grompe, G. Parenti, and A. Ballabio. 2003. The multiple sulfatase deficiency gene encodes an essential and limiting factor for the activity of sulfatases. Cell 113: 445-456.   DOI   ScienceOn
10 Dierks, T., B. Schmidt, L. V. Borissenko, J. Peng, A. Preusser, M. Mariappan, and K. von Figura. 2003. Multiple sulfatase deficiency is caused by mutations in the gene encoding the human C(alpha)-formylglycine generating enzyme. Cell 113: 435-444.   DOI   ScienceOn
11 Dvorak-Ewell, M., D. Wendt, C. Hague, T. Christianson, V. Koppaka, D. Crippen, et al. 2010. Enzyme replacement in a human model of mucopolysaccharidosis IVA in vitro and its biodistribution in the cartilage of wild type mice. PLoS One 5: e12194.   DOI
12 Dierks, T., B. Schmidt, and K. von Figura. 1997. Conversion of cysteine to formylglycine: A protein modification in the endoplasmic reticulum. Proc. Natl. Acad. Sci. USA 94: 11963-11968.   DOI
13 Dresler, K., J. van den Heuvel, R. J. Muller, and W. D. Deckwer. 2006. Production of a recombinant polyester-cleaving hydrolase from Thermobifida fusca in Escherichia coli. Bioprocess Biosyst. Eng. 29: 169-183.   DOI   ScienceOn
14 Driessen, A. J. and N. Nouwen. 2008. Protein translocation across the bacterial cytoplasmic membrane. Annu. Rev. Biochem. 77: 643-667.   DOI   ScienceOn
15 Egea, P. F., R. M. Stroud, and P. Walter. 2005. Targeting proteins to membranes: Structure of the signal recognition particle. Curr. Opin. Struct. Biol. 15: 213-220.   DOI   ScienceOn
16 Landazuri, P., R. A. Poutou-Pinales, J. Acero-Godoy, H. Cordoba-Ruiz, O. Y. Echeverri-Pena, H. Saenz, et al. 2009. Cloning and shake flask expression of hrIDS-like in Pichia pastoris. Afr. J. Biotechnol 8: 2871-2877.
17 Gatti-Lafranconi, P., A. Natalello, D. Ami, S. M. Doglia, and M. Lotti. 2011. Concepts and tools to exploit the potential of bacterial inclusion bodies in protein science and biotechnology. FEBS J. 278: 2408-2418.   DOI   ScienceOn
18 Gutierrez, M., F. Garcia-Vallejo, S. Tomatsu, F. Ceron, C. Almeciga-Diaz, M. Dominguez, and L. Barrera. 2008. Construction of an adenoassociated virus-derived vector for the treatment of Morquio A disease. Biomedica 28: 448-459.
19 Jana, S. and J. K. Deb. 2005. Strategies for efficient production of heterologous proteins in Escherichia coli. Appl. Microbiol. Biotechnol. 67: 289-298.   DOI   ScienceOn
20 Jeong, K. J. and S. Y. Lee. 2002. Excretion of human betaendorphin into culture medium by using outer membrane protein F as a fusion partner in recombinant Escherichia coli. Appl. Environ. Microbiol. 68: 4979-4985.   DOI
21 Kornfeld, S. 1987. Trafficking of lysosomal enzymes. FASEB J. 1: 462-468.
22 Lagunas-Munoz, V. H., N. Cabrera-Valladares, F. Bolivar, G. Gosset, and A. Martinez. 2006. Optimum melanin production using recombinant Escherichia coli. J. Appl. Microbiol. 101: 1002-1008.   DOI   ScienceOn
23 Liu, S. L., K. Du, W. Z. Chen, G. Liu, and M. Xing. 2012. Effective approach to greatly enhancing selective secretion and expression of three cytoplasmic enzymes in Escherichia coli through synergistic effect of EDTA and lysozyme. J. Ind. Microbiol. Biotechnol. 39: 1301-1307.   DOI   ScienceOn
24 Marquordt, C., Q. Fang, E. Will, J. Peng, K. von Figura, and T. Dierks. 2003. Posttranslational modification of serine to formylglycine in bacterial sulfatases. Recognition of the modification motif by the iron-sulfur protein AtsB. J. Biol. Chem. 278: 2212-2218.   DOI   ScienceOn
25 Montano, A. M., S. Tomatsu, G. Gottesman, M. Smith, and T. Orii. 2007. International Morquio A registry: Clinical manifestation and natural course of Morquio A disease. J. Inherit. Metab. Dis. 30: 165-174.   DOI
26 Ni, Y. and R. Chen. 2009. Extracellular recombinant protein production from Escherichia coli. Biotechnol. Lett. 31: 1661-1670.   DOI
27 Petersen, T. N., S. Brunak, H. G. von, and H. Nielsen. 2011. SignalP 4.0: Discriminating signal peptides from transmembrane regions. Nat. Methods 8: 785-786.   DOI   ScienceOn
28 Mosquera, A., A. Rodríguez, C. Vargas, F. Leonardi, A. Espejo, O. Sanchez, et al. 2012. Characterization of a recombinant Nacetylgalactosamine-6-sulfate sulfatase produced in E. coli for enzyme replacement therapy of Morquio A disease. Process Biochem. 47: 2097-2102.   DOI   ScienceOn
29 Nandakumar, M. P., A. Cheung, and M. R. Marten. 2006. Proteomic analysis of extracellular proteins from Escherichia coli W3110. J. Proteome Res. 5: 1155-1161.   DOI   ScienceOn
30 Poutou-Pinales, R. A., A. Vanegas, P. Landazuri, H. Saenz, L. Lareo, O. Echeverri, and L. A. Barrera. 2010. Human sulfatase transiently and functionally active expressed in E. coli K12. Electron. J. Biotechnol. 13: (3) DOI:10.2225/vol13-issue3-fulltext-8.
31 Powers, T. and P. Walter. 1997. Co-translational protein targeting catalyzed by the Escherichia coli signal recognition particle and its receptor. EMBO J. 16: 4880-4886.   DOI   ScienceOn
32 Rivera-Colon, Y., E. K. Schutsky, A. Z. Kita, and S. C. Garman. 2012. The Structure of human GALNS reveals the molecular basis for mucopolysaccharidosis IV A. J. Mol. Biol. 423: 736-751.   DOI   ScienceOn
33 Rodriguez, A., A. J. Espejo, A. Hernandez, O. L. Velasquez, L. M. Lizaraso, H. A. Cordoba, et al. 2010. Enzyme replacement therapy for Morquio A: An active recombinant N-acetylgalactosamine-6-sulfate sulfatase produced in Escherichia coli BL21. J. Ind. Microbiol. Biotechnol. 37: 1193-1201.   DOI
34 Tomatsu, S., A. Montano, A. Ohashi, H. Oikawa, T. Oguma, V. Dung, et al. 2008. Enzyme replacement therapy in a murine model of Morquio A syndrome. Hum. Mol. Genet. 17: 815-824.
35 Sardiello, M., I. Annunziata, G. Roma, and A. Ballabio. 2005. Sulfatases and sulfatase modifying factors: An exclusive and promiscuous relationship. Hum. Mol. Genet. 14: 3203-3217.   DOI   ScienceOn
36 van Diggelen, O., H. Zhao, W. Kleijer, H. Janse, B. Poorthuis, J. van Pelt, et al. 1990. A fluorometric enzyme assay for the diagnosis of Morquio type A. Clin. Chem. Acta 187: 131-140.   DOI   ScienceOn
37 Tomatsu, S., A. M. Montano, V. Dung, A. Ohashi, H. Oikawa, T. Oguma, et al. 2010. Enhacement of drug delivery: Enzymereplacement therapy for murine Morquio A syndrome. Mol. Ther. 18: 1094-1102.   DOI
38 Tomatsu, S., A. M. Montano, H. Oikawa, M. Smith, L. Barrera, Y. Chinen, et al. 2011. Mucopolysaccharidosis type IVA (Morquio A disease): Clinical review and current treatment. Curr. Pharm. Biotechnol. 12: 931-945.   DOI   ScienceOn
39 Upadhyay, A. K., A. Murmu, A. Singh, and A. K. Panda. 2012. Kinetics of inclusion body formation and its correlation with the characteristics of protein aggregates in Escherichia coli. PLoS ONE 7: e33951.   DOI
40 Wang, L. 2009. Towards revealing the structure of bacterial inclusion bodies. Prion 3: 139-145.   DOI
41 Xia, X. X., M. J. Han, S. Y. Lee, and J. S. Yoo. 2008. Comparison of the extracellular proteomes of Escherichia coli B and K-12 strains during high cell density cultivation. Proteomics 8: 2089-2103.   DOI   ScienceOn
42 Zheng, C., Z. Zhao, Y. Li, L. Wang, and Z. Su. 2011. Effect of IPTG amount on apo- and holo- forms of glycerophosphate oxidase expressed in Escherichia coli. Protein Expr. Purif. 75: 133-137.   DOI   ScienceOn