Browse > Article
http://dx.doi.org/10.5483/BMBRep.2011.44.11.713

Both sitagliptin analogue & pioglitazone preserve the β-cell proportion in the islets with different mechanism in non-obese and obese diabetic mice  

Yeom, Jin-A (Division of Endocrinology & Metabolism, Department of Internal Medicine, The Catholic University of Korea)
Kim, Eun-Sook (Division of Endocrinology & Metabolism, Department of Internal Medicine, The Catholic University of Korea)
Park, Heon-Seok (Division of Endocrinology & Metabolism, Department of Internal Medicine, The Catholic University of Korea)
Ham, Dong-Sik (Division of Endocrinology & Metabolism, Department of Internal Medicine, The Catholic University of Korea)
Sun, Cheng-Lin (Division of Endocrinology & Metabolism, Department of Internal Medicine, The Catholic University of Korea)
Kim, Ji-Won (Division of Endocrinology & Metabolism, Department of Internal Medicine, The Catholic University of Korea)
Cho, Jae-Hyoung (Division of Endocrinology & Metabolism, Department of Internal Medicine, The Catholic University of Korea)
Yoon, Kun-Ho (Division of Endocrinology & Metabolism, Department of Internal Medicine, The Catholic University of Korea)
Publication Information
BMB Reports / v.44, no.11, 2011 , pp. 713-718 More about this Journal
Abstract
In this study, the effects of sitagliptin analogue (SITA) or pioglitazone (PIO) treatment on glucose homeostasis and ${\beta}$-cell dynamics in animal models of type 2 diabetes-Akita and db/db mice were evaluated. After 4-6 weeks of treatment, both SITA and PIO were shown to lower non-fasting glucose levels and reduced glycemic excursion in the intraperitoneal glucose tolerance test. In addition, both drugs preserved normal islet structure and the proportion of ${\beta}$-cells in the islets. Compared to the controls, SITA treatment induced a higher ${\beta}$-cell proliferation rate in Akita mice and a lower rate of apoptosis in db/db mice, whereas PIO treatment induced a lower rate of apoptosis in db/db mice and reduced proliferation rates in Akita mice. In conclusion, both SITA and PIO appear to exert some beneficial effects on the islet structure in addition to glycemic control via different mechanisms that involve ${\beta}$-cell dynamics in Akita and db/db mice.
Keywords
Akita mice; db/db mice; Pioglitazone; Sitagliptin analogue; Type 2 diabetes;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 2
연도 인용수 순위
  • Reference
1 Rhodes, C. J. (2005) Type 2 diabetes-a matter of beta-cell life and death? Science 307, 380-384.   DOI   ScienceOn
2 Bonner-Weir, S., Deery, D., Leahy, J. L. and Weir, G. C. (1989) Compensatory growth of pancreatic beta-cells in adult rats after short-term glucose infusion. Diabetes 38, 49-53.   DOI   ScienceOn
3 Parsons, J. A., Brelje, T. C. and Sorenson, R. L. (1992) Adaptation of islets of Langerhans to pregnancy: increased islet cell proliferation and insulin secretion correlates with the onset of placental lactogen secretion. Endocrinology 130, 1459-1466.   DOI   ScienceOn
4 Kawasaki, F., Matsuda, M., Kanda, Y., Inoue, H. and Kaku, K. (2005) Structural and functional analysis of pancreatic islets preserved by pioglitazone in db/db mice. Am. J. Physiol. Endocrinol. Metab. 288, E510-518.   DOI
5 Lamont, B. J. and Drucker, D. J. (2008) Differential antidiabetic efficacy of incretin agonists versus DPP-4 inhibition in high fat fed mice. Diabetes 57, 190-198.   DOI   ScienceOn
6 Xu, G., Stoffers, D. A., Habener, J. F. and Bonner-Weir, S. (1999) Exendin-4 stimulates both beta-cell replication and neogenesis, resulting in increased beta-cell mass and improved glucose tolerance in diabetic rats. Diabetes 48, 2270-2276.   DOI   ScienceOn
7 Xu, G., Kaneto, H., Lopez-Avalos, M. D., Weir, G. C. and Bonner-Weir, S. (2006) GLP-1/exendin-4 facilitates beta-cell neogenesis in rat and human pancreatic ducts. Diabetes Res. Clin. Pract. 73, 107-110.   DOI   ScienceOn
8 Doyle, M. E. and Egan, J. M. (2007) Mechanisms of action of glucagon-like peptide 1 in the pancreas. Pharmacol. Ther. 113, 546-593.   DOI   ScienceOn
9 Kim, S., Winter, K., Nian, C., Tsuneoka, M., Koda, Y. and McIntosh, C. H. (2005) Glucose-dependent insulinotropic polypeptide (GIP) stimulation of pancreatic beta-cell survival is dependent upon phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB) signaling, inactivation of the forkhead transcription factor Foxo1, and down-regulation of bax expression. J. Biol. Chem. 280, 22297-22307.   DOI   ScienceOn
10 Kim, S., Nian, C., Widenmaier, S. and McIntosh, C. H. (2008) Glucose-dependent insulinotropic polypeptide-mediated up-regulation of beta-cell antiapoptotic Bcl-2 gene expression is coordinated by cyclic AMP (cAMP) response element binding protein (CREB) and cAMP-responsive CREB coactivator 2. Mol. Cell. Biol. 28, 1644-1656.   DOI   ScienceOn
11 Friedrichsen, B. N., Neubauer, N., Lee, Y. C., Gram, V. K., Blume, N., Petersen, J. S., Nielsen, J. H. and Mldrup, A. (2006) Stimulation of pancreatic beta-cell replication by incretins involves transcriptional induction of cyclin D1 via multiple signalling pathways. J. Endocrinol. 188, 481-492.   DOI   ScienceOn
12 Han, S. J., Kang, E. S., Hur, K. Y., Kim, H. J., Kim, S. H., Yun, C., Choi, S. E., Ahn, C. W., Cha, B. S., Kang, Y. and Lee, H. C. (2008) Rosiglitazone inhibits early stage of glucolipotoxicity-induced beta-cell apoptosis. Horm. Res. 70, 165-173.   DOI   ScienceOn
13 Matveyenko, A. V., Dry, S., Cox, H. I., Moshtaghian, A., Gurlo, T., Galasso, R., Butler, A. E. and Butler, P. C. (2009) Beneficial endocrine but adverse exocrine effects of sitagliptin in the human islet amyloid polypeptide transgenic rat model of type 2 diabetes: interactions with metformin. Diabetes 58, 1604-1615.   DOI   ScienceOn
14 Saitoh, Y., Chun-ping, C., Noma, K., Ueno, H., Mizuta, M. and Nakazato, M. (2008) Pioglitazone attenuates fatty acid-induced oxidative stress and apoptosis in pancreatic beta-cells. Diabetes Obes. Metab. 10, 564-573.   DOI   ScienceOn
15 Mu, J., Petrov, A., Eiermann, G. J., Woods, J., Zhou, Y., Li, Z., Zycband, E., Feng, Y., Zhu, L., Roy, R. S., Howard, A. D., Li, C., Thornberry, N. A. and Zhang, B. (2009) Inhibition of DPP-4 with sitagliptin improves glycemic control and restores islet cell mass and function in a rodent model of type 2 diabetes. Eur. J. Pharmacol. 623, 148-154.   DOI   ScienceOn
16 Yki-Jrvinen, H. (2004) Thiazolidinediones. N. Engl. J. Med. 351, 1106-1118.   DOI   ScienceOn
17 Robertson, R. P., Harmon, J., Tran, P. O., Tanaka, Y. and Takahashi, H. (2003) Glucose toxicity in beta-cells: type 2 diabetes, good radicals gone bad, and the glutathione connection. Diabetes 52, 581-587.   DOI   ScienceOn
18 Izumi, T., Yokota-Hashimoto, H., Zhao, S., Wang, J., Halban, P. A. and Takeuchi, T. (2003) Dominant negative pathogenesis by mutant proinsulin in the Akita diabetic mouse. Diabetes 52, 409-416.   DOI   ScienceOn
19 Oyadomari, S., Koizumi, A., Takeda, K., Gotoh, T., Akira, S., Araki, E. and Mori, M. (2002) Targeted disruption of the Chop gene delays endoplasmic reticulum stress-mediated diabetes. J. Clin. Invest. 109, 525-532.   DOI
20 O'Brien, B. A., Huang, Y., Geng, X., Dutz, J. P. and Finegood, D. T. (2002) Phagocytosis of apoptotic cells by macrophages from NOD mice is reduced. Diabetes 51, 2481-2488.   DOI   ScienceOn
21 Nonaka, K., Kakikawa, T., Sato, A., Okuyama, K., Fujimoto, G., Kato, N., Suzuki, H., Hirayama, Y., Ahmed, T., Davies, M. J. and Stein, P. (2008) Efficacy and safety of sitagliptin monotherapy in Japanese patients with type 2 diabetes. Diabetes Res. Clin. Pract. 79, 291-298.   DOI   ScienceOn
22 Campbell, I. W. and Mariz, S. (2007) Beta-cell preservation with thiazolidinediones. Diabetes Res. Clin. Pract. 76, 163-176.   DOI   ScienceOn
23 Raz, I., Hanefeld, M., Xu, L., Caria, C., Williams-Herman, D. and Khatami, H. (2006) Efficacy and safety of the dipeptidyl peptidase-4 inhibitor sitagliptin as monotherapy in patients with type 2 diabetes mellitus. Diabetologia 49, 2564-2571.   DOI   ScienceOn
24 Higa, M., Zhou, Y. T., Ravazzola, M., Baetens, D., Orci, L. and Unger, R. H. (1999) Troglitazone prevents mitochondrial alterations, beta cell destruction, and diabetes in obese prediabetic rats. Proc. Natl. Acad. Sci. U.S.A. 96, 11513-11518.   DOI   ScienceOn
25 Finegood, D. T., McArthur, M. D., Kojwang, D., Thomas, M. J., Topp, B. G., Leonard, T. and Buckingham, R. E. (2001) Betacell mass dynamics in Zucker diabetic fatty rats. Rosiglitazone prevents the rise in net cell death. Diabetes 50, 1021-1029.   DOI   ScienceOn
26 Chen, H., Charlat, O., Tartaglia, L. A., Woolf, E. A., Weng, X., Ellis, S. J., Lakey, N. D., Culpepper, J., Moore, K. J., Breitbart, R. E., Duyk, G. M., Tepper, R. I. and Morgenstern, J. P. (1996) Evidence that the diabetes gene encodes the leptin receptor: identification of a mutation in the leptin receptor gene in db/db mice. Cell 84, 491-495.   DOI   ScienceOn
27 Yoshioka, M., Kayo, T., Ikeda, T. and Koizumi, A. (1997) A novel locus, Mody4, distal to D7Mit189 on chromosome 7 determines early-onset NIDDM in nonobese C57BL/6 (Akita) mutant mice. Diabetes 46, 887-894.   DOI   ScienceOn
28 Drucker, D. J. and Nauck, M. A. (2006) The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet 368, 1696-1705.   DOI   ScienceOn
29 Butler, A. E., Janson, J., Bonner-Weir, S., Ritzel, R., Rizza, R. A. and Butler, P. C. (2003) Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes 52, 102-110.   DOI   ScienceOn
30 Bergman, R. N., Phillips, L. S. and Cobelli, C. (1981) Physiologic evaluation of factors controlling glucose tolerance in man: measurement of insulin sensitivity and beta-cell glucose sensitivity from the response to intravenous glucose. J. Clin. Invest. 68, 1456-1467.   DOI
31 UK Prospective Diabetes Study (UKPDS) Group. (1998) Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 352, 837-853.   DOI   ScienceOn
32 Montanya, E., Nacher, V., Biarns, M. and Soler, J. (2000) Linear correlation between beta-cell mass and body weight throughout the lifespan in Lewis rats: role of beta-cell hyperplasia and hypertrophy. Diabetes 49, 1341-1346.   DOI   ScienceOn
33 Pospisilik, J. A., Martin, J., Doty, T., Ehses, J. A., Pamir, N., Lynn, F. C., Piteau, S., Demuth, H., McIntosh, C. H. and Pederson, R. A. (2003) Dipeptidyl peptidase IV inhibitor treatment stimulates beta-cell survival and islet neogenesis in streptozotocin-induced diabetic rats. Diabetes 52, 741-750.   DOI   ScienceOn
34 Mu, J., Woods, J., Zhou, Y., Roy, R. S., Li, Z., Zycband, E., Feng, Y., Zhu, L., Li, C., Howard, A. D., Moller, D. E., Thornberry, N. A. and Zhang, B. (2006) Chronic inhibition of dipeptidyl peptidase-4 with a sitagliptin analog preserves pancreatic beta-cell mass and function in a rodent model of type 2 diabetes. Diabetes 55, 1695-1704.   DOI   ScienceOn
35 Drucker, D. J. (2003) Glucagon-like peptides: regulators of cell proliferation, differentiation, and apoptosis. Mol. Endocrinol. 17, 161-171.   DOI   ScienceOn
36 Kahn, S. E., Prigeon, R. L., McCulloch, D. K., Boyko, E. J., Bergman, R. N., Schwartz, M. W., Neifing, J. L., Ward, W. K., Beard, J. C. and Palmer, J. P. (1993) Quantification of the relationship between insulin sensitivity and beta-cell function in human subjects. Evidence for a hyperbolic function. Diabetes 42, 1663-1672.   DOI   ScienceOn