• Title/Summary/Keyword: Metabolism regulation

Search Result 601, Processing Time 0.023 seconds

Effect of Cholera Toxin Administered Supraspinally or Spinally on the Blood Glucose Level in Pain and D-Glucose Fed Animal Models

  • Sim, Yun-Beom;Park, Soo-Hyun;Kang, Yu-Jung;Kim, Sung-Su;Kim, Chea-Ha;Kim, Su-Jin;Jung, Jun-Sub;Ryu, Ohk-Hyun;Choi, Moon-Gi;Choi, Seong-Soo;Suh, Hong-Won
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.2
    • /
    • pp.163-167
    • /
    • 2013
  • In the present study, the effect of intrathecal (i.t.) or intracerebroventricular (i.c.v.) administration with cholera toxin (CTX) on the blood glucose level was examined in ICR mice. The i.t. treatment with CTX alone for 24 h dose-dependently increased the blood glucose level. However, i.c.v. treatment with CTX for 24 h did not affect the blood glucose level. When mice were orally fed with D-glucose (2 g/kg), the blood glucose level reached to a maximum level at 30 min and almost returned to the control level at 120 min after D-glucose feeding. I.c.v. pretreatment with CTX increased the blood glucose level in a potentiative manner, whereas i.t. pretreatment with CTX increased the blood glucose level in an additive manner in a D-glucose fed group. In addition, the blood glucose level was increased in formalin-induced pain animal model. I.c.v. pretreatment with CTX enhanced the blood glucose level in a potentiative manner in formalin-induced pain animal model. On the other hand, i.t. pretreatment with CTX increased the blood glucose level in an additive manner in formalin-induced pain animal model. Our results suggest that CTX administered supraspinally or spinally differentially modulates the regulation of the blood glucose level in D-glucose fed model as well as in formalin-induced pain model.

Solute Carrier SLC41A1 'A MINI REVIEW'

  • Basnet Hom Bahadur
    • Environmental Mutagens and Carcinogens
    • /
    • v.25 no.2
    • /
    • pp.60-65
    • /
    • 2005
  • The human solute carrier, SLC41Al, is a $Mg^{2}+$ transporter that is regulated by extracellular magnesium. Although intracellular magnesium plays a fundamental role in cellular metabolism, little is known about how $Mg^{2}+$ is taken up and controlled by cells. Magnesium plays a fundamental role in cellular metabolism so that its control within the body is critical. Magnesium homeostasis is principally a balance between intestinal absorption of dietary magnesium and renal excretion of urinary magnesium. The kidney, mainly the distal convoluted tubule, controls magnesium reabsorption. Although renal reabsorption is under the influence of many hormones, selective regulation of magnesium transport is due to intrinsic control involving transcriptional processes and synthesis of transport proteins. Using microarray analysis, identification of the genetic elements involved with this transcriptional control has been begun. SLC41A1(GenBank Accession No. AJ514402), comprises 10 putative transmembrane domains, two of which are highly homologous to the integral membrane part of the prokaryote transports $Mg^{2}+$ and other divalent cations $Sr^2+,\;Zn^2+,\;Cu^2+,\;Fe^2+,\;Co^2+,\;Ba^2+,\;and\;Cd^2+,\;but\;not\;Ca^2+,\;Mn^2+,\;and\;Ni^2+.$ Transport of $Mg^{2}+$ by SLC41Al is rheogenic, voltage dependent, and not coupled to Na or Cl. Expressed SLC41Al transports a range of other divalent cations: $Mg^{2+},\;Sr^{2+},\;Zn^{2+},\;Cu^{2+},\;Fe^{2+},\;Co^{2+},\;Ba^{2+},\;and\;Cd^{2+}$. The divalent cations $Ca^{2+},\;Mn^{2+},\;and\;Ni^{2+}$and the trivalent ion $Gd^{3+}$ did not induce currents nor did they inhibit $Mg^{2+}$ transport. The nonselective cation $La^{3+}$ abolishes $Mg^{2+}$ uptake. Computer analysis of the SLC41Al protein structure reveals that it belongs to MgtE protein family & suggested that the human solute carrier, SLC41Al, might be a eukaryotic $Mg^{2+}$ transporter closely related $(60-70\%)$ protein encoded by SLC41A2 is a $Mg^{2}+$ transporter that might be involved in magnesium homeostasis in epithelial cells also transports a range of other divalent cations: $Ba^2,\;Ni^2,\;CO^2,\;Fe^2,\;or\;Mn^2,\;but\;not\;Ca^2,\;Zn^2,\;or\;Cu^{2+}$ that may have related functional properties.

  • PDF

Analysis of germinating seed stage expressed sequence tags in Oryza sativa L. (벼 발아종자 발현유전자의 발현특성분석)

  • Yoon, Ung-Han;Lee, Gang-Seob;Kim, Chang-Kug;Lee, Jung-Sook;Hahn, Jang-Ho;Yun, Doh-Won;Ji, Hyeon-So;Lee, Tae-Ho;Lee, Jeong-Hwa;Park, Sung-Han;Kim, Gun-Wook;Seo, Mi-Suk;Kim, Yong-Hwan
    • Journal of Plant Biotechnology
    • /
    • v.36 no.3
    • /
    • pp.281-288
    • /
    • 2009
  • Seed germination is the important stage to express many genes for regulation of energy metabolism, starch degradation and cell division from seed dormancy state. For the functional analysis of seed germination mechanisms, we were analyzed the rice cDNA clones (Oryzasativa cultivar Ilpum) obtained from seed imbibition during 48 hours. Total number of 18,101 Expressed Sequence Tags (ESTs) were clustered using SeqMan program. Among them, 8,836 clones were identified as unique clones. We identified the chitinase gene specifically expressed in seed germination and amylase gene involved to starch degradation from the full length cDNA analysis, and several genes were registered to NCBI GeneBank. To analyzed the commonly expressed genes between inmature seed and germinated seed, 25,66 inmature ESTs and 18,101 germinated ESTs were clustered using SeqMan program and identified 2,514 clones as commonly expressed unigene. Among them, alpha-glubulin and alcohol dehydrogenase I were supposed to LEA genes only expressed in the immature and germinated seed stages. For the clustering of orthologous group genes, we further analyzed the 8,836 EST clones from germinating seeds using NCBI clusters of orthologous groups database. Among the clones, 5,076 clones were categorized into information storage and processing, cellular processes and signaling, metabolism and poorly characterized genes, proportioning 783 (14.29%), 1,484 (27%), 1,363 (24.8%) and 1,869 (34%) clones to the previous four categories, respectively.

Interleukin-$1{\beta}$ induces bone resorption by regulation of prostaglandin $E_2$ synthesis and plasminogen activator activity, and TGF-$\beta$ inhibits bone resorption of rat bone cells (쥐의 골세포에서 $PGE_2$ 합성과 plasminogen activator 활성 조절에 의한 IL-$1{\beta}$의 골 흡수유도와 TGF-$\beta$에 의한 골 흡수 억제 기전에 관한 연구)

  • Kim, Young-Hun;Lee, Young-Jun;Chung, Kyu-Rhim;Park, Young-Guk
    • The korean journal of orthodontics
    • /
    • v.30 no.6 s.83
    • /
    • pp.713-721
    • /
    • 2000
  • Bone cells produce multiple growth factors and cytokines that have effects on bone metabolism and can be incorporated into the bone matrix. The present study was designed to extend these observations by examining the interactions between transforming growth factor-$\beta$(TGF-$\beta$) or interleukin-$1\beta$(rhIL-$1\beta$) and bone cells in a rat long bone culture model. IL-$1\beta$ regulates several activities of the osteoblast cells derived from rat long bone explants in vitro. IL-$1\beta$ stimulated cellular proliferation as well as the synthesis of prostaglandin $E_2$ and Plasminogen activator activity in the cultured cells in a dose-dependent manner. TGF-$\beta$ is present in the bone matrix and potentially released during bone resorption. TGF-$\beta$ reduced basal bone resorption and inhibited vitamin $D_3[1,25(OH)_2D_3]$-induced bone resorption in rat long bone cells. These results support the role of IL-$1\beta$ in the pathological modulation of bone cell metabolism, with regard to implication in the Pathogenesis of osteoporosis by IL-$1\beta$, and that TGF-$\beta$ positively inhibits the bone resorption.

  • PDF

Influences of Hydrocortisone, DHEA, Estradiol and Testosterone on the Polyamine Metabolism of Mouse Brain, Kidney, Liver and Intestine (Glucocorticoid 및 성(性) Steroid 홀몬에 의한 뇌(腦) 및 복부내(腹部內) 장기(臟器)의 Polyamine 대사(代謝)의 변동(變動)에 관한 연구(硏究))

  • Choi, Sang-Hyun;Chun, Boe-Gwun;Chun, Jong-Cheol;Chun, Yeon-Sook
    • The Korean Journal of Pharmacology
    • /
    • v.27 no.1
    • /
    • pp.81-88
    • /
    • 1991
  • The bilateral castration of male mice was operated under light ether anesthesia, and the sham operated mice were considered as the uncastrated. The treatments of mice with the following steroids were started one hour after operation. Hydrocortisone 50 mg/kg (HC), dehydroepiandrosterone 250 mg/kg (DHEA), ${\beta}-estradiol$ 5 mg/kg (E2), and testosterone 20mg/kg (TS) were subcutaneously injected into male ICR mice at noon for four days. Animals were sacrificed in the next-morning (at 10-12 A.M.) after the last injection. The intestinal putrescine(PT) content was lower and the liver and intestinal spermine(SM) contents were higher in castrated mice(CM), comparing with those of uncastrated mice (UCM). The intestinal PT content of UCM was markedly increased HC. But all brain polyamines of CM were significantly decreased by it. And HC also increased the spermidine(SD) content of kidney and liver and the intestinal PT content in CM. E2 induced the marked increase of liver PT content with the moderate increase of renal SD in UCM. And E2 significantly increased the brain and liver PT contents and the all renal polyamine contents in CM. Both of DHEA and TS induced the increase of renal PT content in UCM, and they also induced the marked increases of all renal polyamines of CM. In addition, TS increased the brain SM of CM. These results suggest that the steroidal regulation mechanism of brain, kidney, liver, and intestine seems to be different from one another, and the renal activity of polyamine synthesis can be markedly enhanced by sex steroids.

  • PDF

The Critical Roles of Zinc: Beyond Impact on Myocardial Signaling

  • Lee, Sung Ryul;Noh, Su Jin;Pronto, Julius Ryan;Jeong, Yu Jeong;Kim, Hyoung Kyu;Song, In Sung;Xu, Zhelong;Kwon, Hyog Young;Kang, Se Chan;Sohn, Eun-Hwa;Ko, Kyung Soo;Rhee, Byoung Doo;Kim, Nari;Han, Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.5
    • /
    • pp.389-399
    • /
    • 2015
  • Zinc has been considered as a vital constituent of proteins, including enzymes. Mobile reactive zinc ($Zn^{2+}$) is the key form of zinc involved in signal transductions, which are mainly driven by its binding to proteins or the release of zinc from proteins, possibly via a redox switch. There has been growing evidence of zinc's critical role in cell signaling, due to its flexible coordination geometry and rapid shifts in protein conformation to perform biological reactions. The importance and complexity of $Zn^{2+}$ activity has been presumed to parallel the degree of calcium's participation in cellular processes. Whole body and cellular $Zn^{2+}$ levels are largely regulated by metallothioneins (MTs), $Zn^{2+}$ importers (ZIPs), and $Zn^{2+}$ transporters (ZnTs). Numerous proteins involved in signaling pathways, mitochondrial metabolism, and ion channels that play a pivotal role in controlling cardiac contractility are common targets of $Zn^{2+}$. However, these regulatory actions of $Zn^{2+}$ are not limited to the function of the heart, but also extend to numerous other organ systems, such as the central nervous system, immune system, cardiovascular tissue, and secretory glands, such as the pancreas, prostate, and mammary glands. In this review, the regulation of cellular $Zn^{2+}$ levels, $Zn^{2+}$-mediated signal transduction, impacts of $Zn^{2+}$ on ion channels and mitochondrial metabolism, and finally, the implications of $Zn^{2+}$ in health and disease development were outlined to help widen the current understanding of the versatile and complex roles of $Zn^{2+}$.

Construction and Characterization of a cDNA Library from the Camelina sativa L. as an Alternative Oil-Seed Crop (신 바이오디젤 원료 작물인 Camelina의 cDNA library 제작 및 유전자 특성)

  • Park, Won;Jang, Young-Seok;Ahn, Sung-Ju
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.55 no.2
    • /
    • pp.151-158
    • /
    • 2010
  • Camelina sativa L., known as popular names "gold-of-pleasure" or "false flax" is an alternative oilseed crop that can be grown under different climatic and soil conditions. Up to date, however, the genomic information of Camelina has not been studied in detail. Therefore, a cDNA library was constructed and characterized from young leaves. The constructed cDNA library incorporated of 1334 cDNA clones and the size of the insertion fragments average was 736 base pair. We generated a total of 1269 high-quality expressed sequence tags (ESTs) sequences. The result of cluster analysis of EST sequences showed that the number of unigene was 851. According to subsequent analysis, the 476 (55.9%) unigenes were highly homologous to known function genes and the other 375 (44.1%) unigenes were unknown. Remaining 63 (7.4%) unigenes had no homology with any other peptide in NCBI database, indicating that these seemed to be novel genes expressed in leaves of Camelina. The database-matched ESTs were further classified into 17 categories according to their functional annotation. The most abundant of categories were "protein with binding function or cofactor requirement (27%)", "metabolism (11%)", "subcellular localization (11%)", "cellular transport, transport facilities and transport routes (7%)", "energy (6%)", "regulation of metabolism and protein function (6%)". Our result in this study provides an overview of mRNA expression profile and a basal genetic information of Camelina as an oilseed crop.

Proteomics of Protein Expression Profiling in Tissues with Different Radiosensitivity (Proteomics를 이용한 마우스 조직에서의 방사선 감수성 조절 단백질의 탐색)

  • An, Jeung-Hee;Kim, Ji-Young;Seong, Jin-Sil
    • Radiation Oncology Journal
    • /
    • v.22 no.4
    • /
    • pp.298-306
    • /
    • 2004
  • Purpose: The purpose of this study was to identify Radiosensitivity of proteins in tissues with different radiosensitivity. Materials and Methods: C3H/HeJ mice were exposed to 10 Gy. The mice were sacrifiud 8 hrs after radiation. Their spleen and liver tissues were collected and analyzed histologicaly for apoptosis. The expressions of radiosusceptibillty protein were analyzed by 2-dimensional electrophoresis and matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Resilts: The Peak of apoptosis levels were $35.3{\pm}1.7{\%}$ in spleen and $0.6{\pm}0.2{\%}$ in liver at 8 hrs after radiation. Liver, radioresistant tissues, showed that the levels of ROS metabolism related to proteins such as cytochromm c, glutathione S transferase, NADH dehydrogenase, riken cDNA and peroxiredoxin Vl increased after radiation. The expression of cytochrome c increased significantly in spleen and liver tissues after radiation. In spleen, radiosensitivity tissue, the identified proteins showed a significantly quantitative alteration following radiation. It was categorized as signal transduction, apoptosis, cytokine, Ca signal related protein, stress-related protein, cytoskeletal regulation, ROS metabolism, and others. Conclusion: Differences of radiation-induced apoptosis by tissues specifted were coupled with the induction of related radiosensitivity and radioresistant proteins. The result suggests that apoptosis relate protein and redox proteins play important roles in this radiosusceptibility.

Genome-wide association study for the interaction between BMR and BMI in obese Korean women including overweight

  • Lee, Myoungsook;Kwon, Dae Young;Kim, Myung-Sunny;Choi, Chong Ran;Park, Mi-Young;Kim, Ae-jung
    • Nutrition Research and Practice
    • /
    • v.10 no.1
    • /
    • pp.115-124
    • /
    • 2016
  • BACKGROUND/OBJECTIVES: This is the first study to identify common genetic factors associated with the basal metabolic rate (BMR) and body mass index (BMI) in obese Korean women including overweight. This will be a basic study for future research of obese gene-BMR interaction. SUBJECTS/METHODS: The experimental design was 2 by 2 with variables of BMR and BMI. A genome-wide association study (GWAS) of single nucleotide polymorphisms (SNPs) was conducted in the overweight and obesity (BMI > $23kg/m^2$) compared to the normality, and in women with low BMR (< 1426.3 kcal/day) compared to high BMR. A total of 140 SNPs reached formal genome-wide statistical significance in this study (P < $1{\times}10^{-4}$). Surveys to estimate energy intake using 24-h recall method for three days and questionnaires for family history, a medical examination, and physical activities were conducted. RESULTS: We found that two NRG3 gene SNPs in the 10q23.1 chromosomal region were highly associated with BMR (rs10786764; $P=8.0{\times}10^{-7}$, rs1040675; $2.3{\times}10^{-6}$) and BMI (rs10786764; $P=2.5{\times}10^{-5}$, rs10786764; $6.57{\times}10^{-5}$). The other genes related to BMI (HSD52, TMA16, MARCH1, NRG1, NRXN3, and STK4) yielded P < $10{\times}10^{-4}$. Five new loci associated with BMR and BMI, including NRG3, OR8U8, BCL2L2-PABPN1, PABPN1, and SLC22A17 were identified in obese Korean women (P < $1{\times}10^{-4}$). In the questionnaire investigation, significant differences were found in the number of starvation periods per week, family history of stomach cancer, coffee intake, and trial of weight control in each group. CONCLUSION: We discovered several common BMR- and BMI-related genes using GWAS. Although most of these newly established loci were not previously associated with obesity, they may provide new insights into body weight regulation. Our findings of five common genes associated with BMR and BMI in Koreans will serve as a reference for replication and validation of future studies on the metabolic rate.

Profiling of remote skeletal muscle gene changes resulting from stimulation of atopic dermatitis disease in NC/Nga mouse model

  • Lee, Donghee;Seo, Yelim;Kim, Young-Won;Kim, Seongtae;Choi, Jeongyoon;Moon, Sung-Hee;Bae, Hyemi;Kim, Hui-sok;Kim, Hangyeol;Kim, Jae-Hyun;Kim, Tae-Young;Kim, Eunho;Yim, Suemin;Lim, Inja;Bang, Hyoweon;Kim, Jung-Ha;Ko, Jae-Hong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.5
    • /
    • pp.367-379
    • /
    • 2019
  • Although atopic dermatitis (AD) is known to be a representative skin disorder, it also affects the systemic immune response. In a recent study, myoblasts were shown to be involved in the immune regulation, but the roles of muscle cells in AD are poorly understood. We aimed to identify the relationship between mitochondria and atopy by genome-wide analysis of skeletal muscles in mice. We induced AD-like symptoms using house dust mite (HDM) extract in NC/Nga mice. The transcriptional profiles of the untreated group and HDM-induced AD-like group were analyzed and compared using microarray, differentially expressed gene and functional pathway analyses, and protein interaction network construction. Our microarray analysis demonstrated that immune response-, calcium handling-, and mitochondrial metabolism-related genes were differentially expressed. In the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology pathway analyses, immune response pathways involved in cytokine interaction, nuclear factor-kappa B, and T-cell receptor signaling, calcium handling pathways, and mitochondria metabolism pathways involved in the citrate cycle were significantly upregulated. In protein interaction network analysis, chemokine family-, muscle contraction process-, and immune response-related genes were identified as hub genes with many interactions. In addition, mitochondrial pathways involved in calcium signaling, cardiac muscle contraction, tricarboxylic acid cycle, oxidation-reduction process, and calcium-mediated signaling were significantly stimulated in KEGG and Gene Ontology analyses. Our results provide a comprehensive understanding of the genome-wide transcriptional changes of HDM-induced AD-like symptoms and the indicated genes that could be used as AD clinical biomarkers.