Proteomics of Protein Expression Profiling in Tissues with Different Radiosensitivity

Proteomics를 이용한 마우스 조직에서의 방사선 감수성 조절 단백질의 탐색

  • An, Jeung-Hee (Department of Radiation Oncology Yonsei University College of Medicine, Brain Korea 21 Project for Medical Science) ;
  • Kim, Ji-Young (Department of Radiation Oncology Yonsei University College of Medicine, Brain Korea 21 Project for Medical Science) ;
  • Seong, Jin-Sil (Department of Radiation Oncology Yonsei University College of Medicine, Brain Korea 21 Project for Medical Science)
  • 안정희 (연세대학교 의과대학 방사선종양학교실, 두뇌한국21 의과학사업단) ;
  • 김지영 (연세대학교 의과대학 방사선종양학교실, 두뇌한국21 의과학사업단) ;
  • 성진실 (연세대학교 의과대학 방사선종양학교실, 두뇌한국21 의과학사업단)
  • Published : 2004.12.01

Abstract

Purpose: The purpose of this study was to identify Radiosensitivity of proteins in tissues with different radiosensitivity. Materials and Methods: C3H/HeJ mice were exposed to 10 Gy. The mice were sacrifiud 8 hrs after radiation. Their spleen and liver tissues were collected and analyzed histologicaly for apoptosis. The expressions of radiosusceptibillty protein were analyzed by 2-dimensional electrophoresis and matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Resilts: The Peak of apoptosis levels were $35.3{\pm}1.7{\%}$ in spleen and $0.6{\pm}0.2{\%}$ in liver at 8 hrs after radiation. Liver, radioresistant tissues, showed that the levels of ROS metabolism related to proteins such as cytochromm c, glutathione S transferase, NADH dehydrogenase, riken cDNA and peroxiredoxin Vl increased after radiation. The expression of cytochrome c increased significantly in spleen and liver tissues after radiation. In spleen, radiosensitivity tissue, the identified proteins showed a significantly quantitative alteration following radiation. It was categorized as signal transduction, apoptosis, cytokine, Ca signal related protein, stress-related protein, cytoskeletal regulation, ROS metabolism, and others. Conclusion: Differences of radiation-induced apoptosis by tissues specifted were coupled with the induction of related radiosensitivity and radioresistant proteins. The result suggests that apoptosis relate protein and redox proteins play important roles in this radiosusceptibility.

목적:. 방사선 감수성이 다른 마우스 조직에서 apoptosis 유도 수준을 확인하고 방사선 감수성에 관여 된 인자를 Proteomics를 통해서 확인한다. 대상 및 방법: C3H/HeJ 마우스에 10 Gy 방사선을 조사하고 8시간 후 비장과 간을 채취하여 apoptosis 유도 수준을 비교 분석하였다. 조직에서 단백질을 추출하여 2-dimension electrophoresis (2-DE)를 실시하였다. 2-DE에서 방사선에 의해 발현의 변화를 보이는 gel의 spot를 trypsin 처리하여 MALDI-TOF 측정한 후 Swiss-prot database를 통하여 단백질 을 동정하였다. 결과: Apoptosls index는 방사선 조사 후 비장 조직에서 $35.3{\pm}1.7{\%}$, 간조직은 $0.6{\pm}0.2{\%}$로 비장에 비해 간 조직이 낮게 나타났다. Proteomoics 결과에서 방사선 내성 조직인 간은 ROS대사에 관여되는 단백질인 glutathione Stransferase Pi, carbonic anhydrase, NADH dehydrogenase, peroxiredoxin VI, riken cDNA 등이 방사선 조사 후 증가되었고 apoptosis 관련된 단백질인 cytochrome c는 간과 비장 조직에서 확인되었다. 그러나 방사선 민감 조직인 비장에서는 방사선 조사 후 산화적 Stress에 관련된 단백질, apoptosis 관련 단백질, 신호 전달에 관련된 단백질, 면역반응, cell cycle, Ca 신호 전달, 대사 cycle에 관련된 단백질 등이 방사선에 관련하여 발현의 변화를 보여 주었다. 결론 : Apoptosis유도 수준이 다른 조직에서 apoptosis에 관련된 단백질과 redox에 관련된 단백질은 방사성 감수성 조절에 관련된 것으로 보인다.

Keywords

References

  1. Pawlik T, Keyomarsi K. Role of cell cycle in mediating sensitivity to radiotheraphy. Int J Radiat Oncol Biol Phys 2004;59:928-942 https://doi.org/10.1016/j.ijrobp.2004.03.005
  2. Seong J, Kim SH, Lee WJ, et al. Strain-specific differences in radiation-induced apoptosis in murine tissues. J Korean Cancer Assoc 1997;30:1259-1268
  3. Bristow RG, Hill RP. Comparison between in vitro radiosensitivity and in vivo radioresponse in murine tumor cell lines II: in vivo in radioresponse following fractionated treatment and in vitro/in vivo correlations. Int J Radiat Oncol Biol Phys 1990;18:331-345 https://doi.org/10.1016/0360-3016(90)90098-5
  4. Hall EJ. Radiobiology for the radiologist, 5th ed. Philadelphia, PA J.B. Lippincott Co. 2000:314-338
  5. Taylor AM. Chromosome instability syndromes. Best Pract Res Clin Haematol. 2001;14:631-644
  6. West CM, Elyan SA, Berry P, et al. A comparison of the radiosensitivity of lymphocytes from normal donors, cancer patients, individuals with ataxia-telangiectasia (A-T) and A-T heterozygotes. Int J Radiat Biol 1995; 68:197-203 https://doi.org/10.1080/09553009514551101
  7. Ingold JA, Reed GB, Gallager S. Radiation hepatitis. Am J Roentgenol 1965; 93: 200-208
  8. Ploemacher RE, Van Os R, Van Beurden CA, et al. Murine haemopoietic stem cells with long-term engraftment and marrow repopulating ability are more resistant to gammaradiation than are spleen colony forming cells. Int J Radiat Biol 1992;61:489-499 https://doi.org/10.1080/09553009214551251
  9. Kerr NC, Wright EG, Plumb MA. p53-dependent X-rayinduced modulation of cytokine mRNA levels in vivo. Pathol 1998;186:24-30 https://doi.org/10.1002/(SICI)1096-9896(199809)186:1<24::AID-PATH139>3.0.CO;2-7
  10. Seong J, Kim SH, Suh CO. Enhancement of tumor radioresponse by combined chemotheraphy in murine hepato-carcinoma J Gastroenterol Hepatol 2001;16:883-889 https://doi.org/10.1046/j.1440-1746.2001.02533.x
  11. Bang B, Gniadecki R, Larsen JK, et al. In vivo UVB irradiation induces clustering of Fas (CD95) on human epidermal cells. Exp Dermatol 2003;12:791-798 https://doi.org/10.1111/j.0906-6705.2003.00091.x
  12. An JH, Kim J, Seong J. Redox signal by ionizing radiation in mouse liver. Ann N Y Acad Sci 2004;1030:86-94 https://doi.org/10.1196/annals.1329.011
  13. Kim SH, Seong J. The role of Fas/FasL in radiation induced apoptosis in vivo. J Korea Soc Ther Radiol Oncol 2002;21: 222-226
  14. Kolesnick R, Fuks Z. Radiation and ceramide-induced apoptosis Oncogene 2003;22:5897-5906
  15. Maity A, Kao G, Mushel R, et al. J. Potential molecular target for manipulating the radiation response Int J. Radiat Oncol Biol Phys 1997;37:639-653 https://doi.org/10.1016/S0360-3016(96)00598-6
  16. Chen Q, Chai YC, Mazumder S, et al. The late increase in intracellular free radical oxygen species during apoptosis is associated with cytochrome c release, caspase activation, and mitochondrial dysfunction. Cell Death Differ 2003;10:323-34 https://doi.org/10.1038/sj.cdd.4401148
  17. Hallahan DE, Beckett MA, Kufe D, et al. Interaction between recombinant human tumor necrosis factor and radiation in 13 human tumor cell lines. Int J Radiat Oncol Biol Phys 1990;19:69-74 https://doi.org/10.1016/0360-3016(90)90136-8
  18. Skulachev VP. Cytochrome c in the apoptotic and antioxidant cascades FEBS Lett 1998;423:275-80
  19. Ricci JE, Gottlieb RA, Green DR. Caspase-mediated loss of mitochondrial function and generation of reactive oxygen species during apoptosis. J Cell Biol 2003;160:65-75 https://doi.org/10.1083/jcb.200208089
  20. Sorenson CM. Bcl-2 family members and disease. Biochim Biophys Acta 2004;1644:169-177 https://doi.org/10.1016/j.bbamcr.2003.08.010
  21. Oh WY, Song MH, Chung EJ, et al. Regulation of apoptosis and cell cycle in irradiated mouse brain. J Korea Soc Ther Radiol Oncol 2001;19:146-152
  22. Bemetti R, Sal GD, Monte M, et al. The death substrate Gas2 binds m-calpain and increases susceptibility to p53- dependent apoptosis. The EMBO J 2001;20:2702-2714 https://doi.org/10.1093/emboj/20.11.2702
  23. Lee K, Park JS, Kim YJ, et al. Differential expression of Prx I and II in mouse testis and their up-regulation by radiation. Biochem Biophys Res Commun 2002;296:337-342 https://doi.org/10.1016/S0006-291X(02)00801-X
  24. Rhee SG, Kim KH,Chae HZ, et al. Antioxidant defense mechanisms: a new thiol-specific antioxidant enzyme. Ann N Y Acad Sci 1994;738:86-92 https://doi.org/10.1111/j.1749-6632.1994.tb21793.x
  25. Park SH, Chung YM, Lee YS, et al. Antisense of human peroxiredoxin II enhances radiation-induced cell death. Clin Cancer Res 2000;6:4915-4920