Browse > Article
http://dx.doi.org/10.4196/kjpp.2015.19.5.389

The Critical Roles of Zinc: Beyond Impact on Myocardial Signaling  

Lee, Sung Ryul (Department of Integrated Biomedical Science, Cardiovascular and Metabolic disease Center, College of Medicine, Inje University)
Noh, Su Jin (Department of Physiology, Graduate School of Inje University, Cardiovascular and Metabolic Disease Center, Inje University)
Pronto, Julius Ryan (Department of Physiology, Graduate School of Inje University, Cardiovascular and Metabolic Disease Center, Inje University)
Jeong, Yu Jeong (Department of Physiology, Graduate School of Inje University, Cardiovascular and Metabolic Disease Center, Inje University)
Kim, Hyoung Kyu (Department of Integrated Biomedical Science, Cardiovascular and Metabolic disease Center, College of Medicine, Inje University)
Song, In Sung (College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University)
Xu, Zhelong (Department of Physiology and Pathophysiology, Tianjin Medical University)
Kwon, Hyog Young (Soonchunhyang Institute of Medio-bio Science (SIMS), Soonchunhyang University)
Kang, Se Chan (Department of Life Science, Gachon University)
Sohn, Eun-Hwa (Department of Herbal Medicine Resource, Kangwon National University)
Ko, Kyung Soo (College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University)
Rhee, Byoung Doo (College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University)
Kim, Nari (College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University)
Han, Jin (College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University)
Publication Information
The Korean Journal of Physiology and Pharmacology / v.19, no.5, 2015 , pp. 389-399 More about this Journal
Abstract
Zinc has been considered as a vital constituent of proteins, including enzymes. Mobile reactive zinc ($Zn^{2+}$) is the key form of zinc involved in signal transductions, which are mainly driven by its binding to proteins or the release of zinc from proteins, possibly via a redox switch. There has been growing evidence of zinc's critical role in cell signaling, due to its flexible coordination geometry and rapid shifts in protein conformation to perform biological reactions. The importance and complexity of $Zn^{2+}$ activity has been presumed to parallel the degree of calcium's participation in cellular processes. Whole body and cellular $Zn^{2+}$ levels are largely regulated by metallothioneins (MTs), $Zn^{2+}$ importers (ZIPs), and $Zn^{2+}$ transporters (ZnTs). Numerous proteins involved in signaling pathways, mitochondrial metabolism, and ion channels that play a pivotal role in controlling cardiac contractility are common targets of $Zn^{2+}$. However, these regulatory actions of $Zn^{2+}$ are not limited to the function of the heart, but also extend to numerous other organ systems, such as the central nervous system, immune system, cardiovascular tissue, and secretory glands, such as the pancreas, prostate, and mammary glands. In this review, the regulation of cellular $Zn^{2+}$ levels, $Zn^{2+}$-mediated signal transduction, impacts of $Zn^{2+}$ on ion channels and mitochondrial metabolism, and finally, the implications of $Zn^{2+}$ in health and disease development were outlined to help widen the current understanding of the versatile and complex roles of $Zn^{2+}$.
Keywords
Metallothionein; Signal Transduction; Zinc; Zinc exporter; Zinc importer;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Khan MU, Cheema Y, Shahbaz AU, Ahokas RA, Sun Y, Gerling IC, Bhattacharya SK, Weber KT. Mitochondria play a central role in nonischemic cardiomyocyte necrosis: common to acute and chronic stressor states. Pflugers Arch. 2012;464:123-131.   DOI
2 Taylor KM, Morgan HE, Johnson A, Nicholson RI. Structure-function analysis of a novel member of the LIV-1 subfamily of zinc transporters, ZIP14. FEBS Lett. 2005;579:427-432.   DOI
3 Masters BA, Quaife CJ, Erickson JC, Kelly EJ, Froelick GJ, Zambrowicz BP, Brinster RL, Palmiter RD. Metallothionein III is expressed in neurons that sequester zinc in synaptic vesicles. J Neurosci. 1994;14:5844-5857.   DOI
4 Tuncay E, Okatan EN, Toy A, Turan B. Enhancement of cellular antioxidant-defence preserves diastolic dysfunction via regulation of both diastolic $Zn^{2+}$ and $Ca^{2+}$ and prevention of RyR2-leak in hyperglycemic cardiomyocytes. Oxid Med Cell Longev. 2014;2014:290381.
5 Tuncay E, Okatan EN, Vassort G, Turan B. ${\beta}$-blocker timolol prevents arrhythmogenic $Ca^{2+}$ release and normalizes $Ca^{2+}$ and $Zn^{2+}$ dyshomeostasis in hyperglycemic rat heart. PLoS One. 2013;8:e71014.   DOI
6 Dineley KE, Votyakova TV, Reynolds IJ. Zinc inhibition of cellular energy production: implications for mitochondria and neurodegeneration. J Neurochem. 2003;85:563-570.   DOI
7 Hu H, Bandell M, Petrus MJ, Zhu MX, Patapoutian A. Zinc activates damage-sensing TRPA1 ion channels. Nat Chem Biol. 2009;5:183-190.   DOI
8 Feng P, Li T, Guan Z, Franklin RB, Costello LC. The involvement of Bax in zinc-induced mitochondrial apoptogenesis in malignant prostate cells. Mol Cancer. 2008;7:25.   DOI
9 Wroblewski N, Schill WB, Henkel R. Metal chelators change the human sperm motility pattern. Fertil Steril. 2003;79 Suppl 3:1584-1589.   DOI
10 Devinney MJ, Malaiyandi LM, Vergun O, DeFranco DB, Hastings TG, Dineley KE. A comparison of $Zn^{2+}$- and $Ca^{2+}$-triggered depolarization of liver mitochondria reveals no evidence of $Zn^{2+}$-induced permeability transition. Cell Calcium. 2009;45:447-455.   DOI
11 Witte KK, Clark AL, Cleland JG. Chronic heart failure and micronutrients. J Am Coll Cardiol. 2001;37:1765-1774.   DOI
12 Costello LC, Franklin RB. Cytotoxic/tumor suppressor role of zinc for the treatment of cancer: an enigma and an opportunity. Expert Rev Anticancer Ther. 2012;12:121-128.   DOI
13 Coyle P, Philcox JC, Carey LC, Rofe AM. Metallothionein: the multipurpose protein. Cell Mol Life Sci. 2002;59:627-647.   DOI
14 Little PJ, Bhattacharya R, Moreyra AE, Korichneva IL. Zinc and cardiovascular disease. Nutrition. 2010;26:1050-1057.   DOI
15 Liuzzi JP, Cousins RJ. Mammalian zinc transporters. Annu Rev Nutr. 2004;24:151-172.   DOI
16 Carpene E, Andreani G, Isani G. Metallothionein functions and structural characteristics. J Trace Elem Med Biol. 2007;21 Suppl 1:35-39.   DOI
17 Langmade SJ, Ravindra R, Daniels PJ, Andrews GK. The transcription factor MTF-1 mediates metal regulation of the mouse ZnT1 gene. J Biol Chem. 2000;275:34803-34809.   DOI
18 Colvin RA, Bush AI, Volitakis I, Fontaine CP, Thomas D, Kikuchi K, Holmes WR. Insights into $Zn^{2+}$ homeostasis in neurons from experimental and modeling studies. Am J Physiol Cell Physiol. 2008;294:C726-742.   DOI
19 Hogstrand C, Kille P, Nicholson RI, Taylor KM. Zinc transporters and cancer: a potential role for ZIP7 as a hub for tyrosine kinase activation. Trends Mol Med. 2009;15:101-111.   DOI
20 Kiedrowski L. Proton-dependent zinc release from intracellular ligands. J Neurochem. 2014;130:87-96.   DOI
21 Shuttleworth CW, Weiss JH. Zinc: new clues to diverse roles in brain ischemia. Trends Pharmacol Sci. 2011;32:480-486.   DOI
22 Nowakowski A, Petering D. Sensor specific imaging of proteomic $Zn^{2+}$ with zinquin and TSQ after cellular exposure to N-ethylmaleimide. Metallomics. 2012;4:448-456.   DOI
23 Sensi SL, Ton-That D, Sullivan PG, Jonas EA, Gee KR, Kaczmarek LK, Weiss JH. Modulation of mitochondrial function by endogenous $Zn^{2+}$ pools. Proc Natl Acad Sci U S A. 2003;100:6157-6162.   DOI
24 Kamalov G, Deshmukh PA, Baburyan NY, Gandhi MS, Johnson PL, Ahokas RA, Bhattacharya SK, Sun Y, Gerling IC, Weber KT. Coupled calcium and zinc dyshomeostasis and oxidative stress in cardiac myocytes and mitochondria of rats with chronic aldosteronism. J Cardiovasc Pharmacol. 2009;53:414-423.   DOI
25 Ohana E, Hoch E, Keasar C, Kambe T, Yifrach O, Hershfinkel M, Sekler I. Identification of the $Zn^{2+}$ binding site and mode of operation of a mammalian $Zn^{2+}$ transporter. J Biol Chem. 2009;284:17677-17686.   DOI
26 Zou MH, Shi C, Cohen RA. Oxidation of the zinc-thiolate complex and uncoupling of endothelial nitric oxide synthase by peroxynitrite. J Clin Invest. 2002;109:817-826.   DOI
27 Maret W. The function of zinc metallothionein: a link between cellular zinc and redox state. J Nutr. 2000;130(5S Suppl):1455S-1458S.   DOI
28 Klein C, Sunahara RK, Hudson TY, Heyduk T, Howlett AC. Zinc inhibition of cAMP signaling. J Biol Chem. 2002;277:11859-11865.   DOI
29 Alvarez-Collazo J, Diaz-Garcia CM, Lopez-Medina AI, Vassort G, Alvarez JL. Zinc modulation of basal and ${\beta}$-adrenergically stimulated L-type $Ca^{2+}$ current in rat ventricular cardiomyocytes: consequences in cardiac diseases. Pflugers Arch. 2012;464:459-470.   DOI
30 Puceat M, Bony C, Jaconi M, Vassort G. Specific activation of adenylyl cyclase V by a purinergic agonist. FEBS Lett. 1998;431:189-194.   DOI
31 Gomez AM, Kerfant BG, Vassort G. Microtubule disruption modulates $Ca^{2+}$ signaling in rat cardiac myocytes. Circ Res. 2000;86:30-36.   DOI
32 Volpe SL, Lowe NM, Woodhouse LR, King JC. Effect of maximal exercise on the short-term kinetics of zinc metabolism in sedentary men. Br J Sports Med. 2007;41:156-161.   DOI
33 Aslund F, Beckwith J. Bridge over troubled waters: sensing stress by disulfide bond formation. Cell. 1999;96:751-753.   DOI
34 Bellomo E, Massarotti A, Hogstrand C, Maret W. Zinc ions modulate protein tyrosine phosphatase 1B activity. Metallomics. 2014;6:1229-1239.   DOI
35 Pandey NR, Vardatsikos G, Mehdi MZ, Srivastava AK. Cell-type-specific roles of IGF-1R and EGFR in mediating $Zn^{2+}$-induced ERK1/2 and PKB phosphorylation. J Biol Inorg Chem. 2010;15:399-407.   DOI
36 Haase H, Maret W. Protein tyrosine phosphatases as targets of the combined insulinomimetic effects of zinc and oxidants. Biometals. 2005;18:333-338.   DOI
37 Turan B, Fliss H, Desilets M. Oxidants increase intracellular free $Zn^{2+}$ concentration in rabbit ventricular myocytes. Am J Physiol. 1997;272:H2095-2106.
38 Tuncay E, Bilginoglu A, Sozmen NN, Zeydanli EN, Ugur M, Vassort G, Turan B. Intracellular free zinc during cardiac excitation-contraction cycle: calcium and redox dependencies. Cardiovasc Res. 2011;89:634-642.   DOI
39 Korichneva I, Hoyos B, Chua R, Levi E, Hammerling U. Zinc release from protein kinase C as the common event during activation by lipid second messenger or reactive oxygen. J Biol Chem. 2002;277:44327-44331.   DOI
40 Wang G, Strang C, Pfaffinger PJ, Covarrubias M. $Zn^{2+}$-dependent redox switch in the intracellular T1-T1 interface of a Kv channel. J Biol Chem. 2007;282:13637-13647.   DOI
41 Zhang S, Kehl SJ, Fedida D. Modulation of Kv1.5 potassium channel gating by extracellular zinc. Biophys J. 2001;81:125-136.   DOI
42 Mahaut-Smith MP. The effect of zinc on calcium and hydrogen ion currents in intact snail neurones. J Exp Biol. 1989;145:455-464.
43 Atar D, Backx PH, Appel MM, Gao WD, Marban E. Excitation-transcription coupling mediated by zinc influx through voltage-dependent calcium channels. J Biol Chem. 1995;270:2473-2477.   DOI
44 Stanfield PR. The effect of zinc ions on the gating of the delayed potassium conductance of frog sartorius muscle. J Physiol. 1975;251:711-735.   DOI
45 Vogt K, Mellor J, Tong G, Nicoll R. The actions of synaptically released zinc at hippocampal mossy fiber synapses. Neuron. 2000;26:187-196.   DOI
46 Kerchner GA, Canzoniero LM, Yu SP, Ling C, Choi DW. $Zn^{2+}$ current is mediated by voltage-gated $Ca^{2+}$ channels and enhanced by extracellular acidity in mouse cortical neurones. J Physiol. 2000;528 Pt 1:39-52.   DOI
47 Andersson DA, Gentry C, Moss S, Bevan S. Clioquinol and pyrithione activate TRPA1 by increasing intracellular $Zn^{2+}$. Proc Natl Acad Sci U S A. 2009;106:8374-8379.   DOI
48 Ye B, Maret W, Vallee BL. Zinc metallothionein imported into liver mitochondria modulates respiration. Proc Natl Acad Sci U S A. 2001;98:2317-2322.   DOI
49 Kleiner D. The effect of $Zn^{2+}$ ions on mitochondrial electron transport. Arch Biochem Biophys. 1974;165:121-125.   DOI
50 Maret W, Jacob C, Vallee BL, Fischer EH. Inhibitory sites in enzymes: zinc removal and reactivation by thionein. Proc Natl Acad Sci U S A. 1999;96:1936-1940.   DOI
51 Meeusen JW, Nowakowski A, Petering DH. Reaction of metal-binding ligands with the zinc proteome: zinc sensors and N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine. Inorg Chem. 2012;51:3625-3632.   DOI
52 Vallee BL. Metallothionein: historical review and perspectives. Experientia Suppl. 1979;34:19-39.   DOI
53 Brown AM, Kristal BS, Effron MS, Shestopalov AI, Ullucci PA, Sheu KF, Blass JP, Cooper AJ. $Zn^{2+}$ inhibits alpha-ketoglutarate-stimulated mitochondrial respiration and the isolated alpha-ketoglutarate dehydrogenase complex. J Biol Chem. 2000;275:13441-13447.   DOI
54 Maret W, Heffron G, Hill HA, Djuricic D, Jiang LJ, Vallee BL. The ATP/metallothionein interaction: NMR and STM. Biochemistry. 2002;41:1689-1694.   DOI
55 Skulachev VP, Evtodienko IuV, Iasaitis AA, Gmirnova EG, Chistiakov VV. Reversible suppression of electron transfer between cytochromes B and C. Vopr Med Khim. 1966;12:438-440.
56 Berry EA, Zhang Z, Bellamy HD, Huang L. Crystallographic location of two $Zn^{2+}$-binding sites in the avian cytochrome bc(1) complex. Biochim Biophys Acta. 2000;1459:440-448.   DOI
57 Gazaryan IG, Krasnikov BF, Ashby GA, Thorneley RN, Kristal BS, Brown AM. Zinc is a potent inhibitor of thiol oxidoreductase activity and stimulates reactive oxygen species production by lipoamide dehydrogenase. J Biol Chem. 2002;277:10064-10072.   DOI
58 Feng W, Cai J, Pierce WM, Franklin RB, Maret W, Benz FW, Kang YJ. Metallothionein transfers zinc to mitochondrial aconitase through a direct interaction in mouse hearts. Biochem Biophys Res Commun. 2005;332:853-858.   DOI
59 Kelleher SL, McCormick NH, Velasquez V, Lopez V. Zinc in specialized secretory tissues: roles in the pancreas, prostate, and mammary gland. Adv Nutr. 2011;2:101-111.   DOI
60 Costello LC, Franklin RB, Feng P. Mitochondrial function, zinc, and intermediary metabolism relationships in normal prostate and prostate cancer. Mitochondrion. 2005;5:143-153.   DOI
61 Wudarczyk J, Debska G, Lenartowicz E. Zinc as an inducer of the membrane permeability transition in rat liver mitochondria. Arch Biochem Biophys. 1999;363:1-8.   DOI
62 Haase H, Rink L. Multiple impacts of zinc on immune function. Metallomics. 2014;6:1175-1180.   DOI
63 Feng P, Li TL, Guan ZX, Franklin RB, Costello LC. Direct effect of zinc on mitochondrial apoptogenesis in prostate cells. Prostate. 2002;52:311-318.   DOI
64 Calderone A, Jover T, Mashiko T, Noh KM, Tanaka H, Bennett MV, Zukin RS. Late calcium EDTA rescues hippocampal CA1 neurons from global ischemia-induced death. J Neurosci. 2004;24:9903-9913.   DOI
65 McCord MC, Aizenman E. The role of intracellular zinc release in aging, oxidative stress, and Alzheimer's disease. Front Aging Neurosci. 2014;6:77.
66 Maret W. Zinc and human disease. Met Ions Life Sci. 2013;13:389-414.   DOI
67 Frederickson C, Frederickson CJ, Maret W, Sandstead H, Giblin L, Thompson R. Meeting report: zinc signals 2007-expanding roles of the free zinc ion in biology. Sci STKE. 2007;2007:pe61.
68 Foster M, Samman S. Zinc and regulation of inflammatory cytokines: implications for cardiometabolic disease. Nutrients. 2012;4:676-694.   DOI
69 Holst B, Egerod KL, Schild E, Vickers SP, Cheetham S, Gerlach LO, Storjohann L, Stidsen CE, Jones R, Beck-Sickinger AG, Schwartz TW. GPR39 signaling is stimulated by zinc ions but not by obestatin. Endocrinology. 2007;148:13-20.   DOI
70 Mlyniec K, Budziszewska B, Holst B, Ostachowicz B, Nowak G. GPR39 (zinc receptor) knockout mice exhibit depression-like behavior and CREB/BDNF down-regulation in the hippocampus. Int J Neuropsychopharmacol. 2014;18. doi: 10.1093/ijnp/pyu002.
71 Popovics P, Stewart AJ. GPR39: a $Zn^{2+}$-activated G protein-coupled receptor that regulates pancreatic, gastrointestinal and neuronal functions. Cell Mol Life Sci. 2011;68:85-95.   DOI
72 Weiss JH, Sensi SL, Koh JY. $Zn^{2+}$: a novel ionic mediator of neural injury in brain disease. Trends Pharmacol Sci. 2000;21:395-401.   DOI
73 Halas ES, Hunt CD, Eberhardt MJ. Learning and memory disabilities in young adult rats from mildly zinc deficient dams. Physiol Behav. 1986;37:451-458.   DOI
74 Adamo AM, Zago MP, Mackenzie GG, Aimo L, Keen CL, Keenan A, Oteiza PI. The role of zinc in the modulation of neuronal proliferation and apoptosis. Neurotox Res. 2010;17:1-14.   DOI
75 Seth R, Corniola RS, Gower-Winter SD, Morgan TJ Jr, Bishop B, Levenson CW. Zinc deficiency induces apoptosis via mitochondrial p53- and caspase-dependent pathways in human neuronal precursor cells. J Trace Elem Med Biol. 2015;30:59-65.   DOI
76 Lee J, Kim CH, Kim DG, Ahn YS. Zinc inhibits amyloid beta production from Alzheimer's amyloid precursor protein in SH-SY5Y cells. Korean J Physiol Pharmacol. 2009;13:195-200.   DOI
77 Tamaki M, Fujitani Y. Role of zinc in type 2 diabetes. Nihon Eiseigaku Zasshi. 2014;69:15-23.   DOI
78 Miao X, Sun W, Fu Y, Miao L, Cai L. Zinc homeostasis in the metabolic syndrome and diabetes. Front Med. 2013;7:31-52.   DOI
79 Yi T, Vick JS, Vecchio MJ, Begin KJ, Bell SP, Delay RJ, Palmer BM. Identifying cellular mechanisms of zinc-induced relaxation in isolated cardiomyocytes. Am J Physiol Heart Circ Physiol. 2013;305:H706-715.   DOI
80 Ciofalo FR, Thomas LJ Jr. The effects of zinc on contractility, membrane potentials, and cation content of rat atria. J Gen Physiol. 1965;48:825-839.   DOI
81 Schnieden H, Small RC. Spasmolytic effects of cadmium and zinc ions upon the guinea-pig isolated ileum preparation. Br J Pharmacol. 1971;41:488-499.   DOI
82 Gomez E, del Diego C, Orden I, Elosegui LM, Borque L, Escanero JF. Longitudinal study of serum copper and zinc levels and their distribution in blood proteins after acute myocardial infarction. J Trace Elem Med Biol. 2000;14:65-70.   DOI
83 Evangelou A, Kalfakakou V. Electrocardiographic alterations induced by zinc ions on isolated guinea pig heart preparations. Biol Trace Elem Res. 1993;36:203-208.   DOI
84 Oster O, Dahm M, Oelert H. Element concentrations (selenium, copper, zinc, iron, magnesium, potassium, phosphorous) in heart tissue of patients with coronary heart disease correlated with physiological parameters of the heart. Eur Heart J. 1993;14:770-774.   DOI
85 Shokrzadeh M, Ghaemian A, Salehifar E, Aliakbari S, Saravi SS, Ebrahimi P. Serum zinc and copper levels in ischemic cardiomyopathy. Biol Trace Elem Res. 2009;127:116-123.   DOI
86 Foster M, Samman S. Zinc and redox signaling: perturbations associated with cardiovascular disease and diabetes mellitus. Antioxid Redox Signal. 2010;13:1549-1573.   DOI
87 Cohen N, Golik A. Zinc balance and medications commonly used in the management of heart failure. Heart Fail Rev. 2006;11:19-24.   DOI
88 Meerarani P, Reiterer G, Toborek M, Hennig B. Zinc modulates PPARgamma signaling and activation of porcine endothelial cells. J Nutr. 2003;133:3058-3064.   DOI
89 Cho YS, Lee KH, Park JW. Pyrithione-zinc Prevents UVB-induced Epidermal Hyperplasia by Inducing HIF-1alpha. Korean J Physiol Pharmacol. 2010;14:91-97.   DOI
90 Alcantara EH, Shin MY, Feldmann J, Nixon GF, Beattie JH, Kwun IS. Long-term zinc deprivation accelerates rat vascular smooth muscle cell proliferation involving the down-regulation of JNK1/2 expression in MAPK signaling. Atherosclerosis. 2013;228:46-52.   DOI
91 Donnelly TE Jr. Effects of zinc chloride on the hydrolysis of cyclic GMP and cyclic AMP by the activator-dependent cyclic nucleotide phosphodiesterase from bovine heart. Biochim Biophys Acta. 1978;522:151-160.   DOI
92 Prost AL, Bloc A, Hussy N, Derand R, Vivaudou M. Zinc is both an intracellular and extracellular regulator of KATP channel function. J Physiol. 2004;559:157-167.   DOI
93 Chowanadisai W, Lonnerdal B, Kelleher SL. Identification of a mutation in SLC30A2 (ZnT-2) in women with low milk zinc concentration that results in transient neonatal zinc deficiency. J Biol Chem. 2006;281:39699-39707.   DOI
94 Fraker PJ, King LE. Reprogramming of the immune system during zinc deficiency. Annu Rev Nutr. 2004;24:277-298.   DOI
95 Haase H, Beyersmann D. Intracellular zinc distribution and transport in C6 rat glioma cells. Biochem Biophys Res Commun. 2002;296:923-928.   DOI
96 Frederickson CJ, Kasarskis EJ, Ringo D, Frederickson RE. A quinoline fluorescence method for visualizing and assaying the histochemically reactive zinc (bouton zinc) in the brain. J Neurosci Methods. 1987;20:91-103.   DOI
97 Vallee BL, Falchuk KH. The biochemical basis of zinc physiology. Physiol Rev. 1993;73:79-118.   DOI
98 Raulin J. Annales des sciences naturelles. Botanique Et BIologie Vegetale. 1869;11:93-345.
99 Prasad AS, Halsted JA, Nadimi M. Syndrome of iron deficiency anemia, hepatosplenomegaly, hypogonadism, dwarfism and geophagia. Am J Med. 1961;31:532-546.   DOI
100 Maret W, Sandstead HH. Zinc requirements and the risks and benefits of zinc supplementation. J Trace Elem Med Biol. 2006;20:3-18.   DOI
101 Andreini C, Bertini I, Rosato A. Metalloproteomes: a bioinformatic approach. Acc Chem Res. 2009;42:1471-1479.   DOI
102 Kochanczyk T, Drozd A, Krezel A. Relationship between the architecture of zinc coordination and zinc binding affinity in proteins--insights into zinc regulation. Metallomics. 2015;7:244-257.   DOI
103 Costello LC, Fenselau CC, Franklin RB. Evidence for operation of the direct zinc ligand exchange mechanism for trafficking, transport, and reactivity of zinc in mammalian cells. J Inorg Biochem. 2011;105:589-599.   DOI
104 Dudev T, Lim C. Principles governing Mg, Ca, and Zn binding and selectivity in proteins. Chem Rev. 2003;103:773-788.   DOI
105 Permyakov EA, Kretsinger RH. Cell signaling, beyond cytosolic calcium in eukaryotes. J Inorg Biochem. 2009;103:77-86.   DOI
106 Xu Z, Zhou J. Zinc and myocardial ischemia/reperfusion injury. Biometals. 2013;26:863-878.   DOI
107 Fukada T, Yamasaki S, Nishida K, Murakami M, Hirano T. Zinc homeostasis and signaling in health and diseases: Zinc signaling. J Biol Inorg Chem. 2011;16:1123-1134.   DOI
108 Oteiza PI. Zinc and the modulation of redox homeostasis. Free Radic Biol Med. 2012;53:1748-1759.   DOI
109 Hughes S, Samman S. The effect of zinc supplementation in humans on plasma lipids, antioxidant status and thrombogenesis. J Am Coll Nutr. 2006;25:285-291.   DOI
110 Taylor KM, Hiscox S, Nicholson RI, Hogstrand C, Kille P. Protein kinase CK2 triggers cytosolic zinc signaling pathways by phosphorylation of zinc channel ZIP7. Sci Signal. 2012;5:ra11.
111 Haase H, Rink L. Zinc signals and immune function. Biofactors. 2014;40:27-40.   DOI
112 Takeda A, Nakamura M, Fujii H, Tamano H. Synaptic $Zn^{2+}$ homeostasis and its significance. Metallomics. 2013;5:417-423.   DOI
113 Barnett JP, Blindauer CA, Kassaar O, Khazaipoul S, Martin EM, Sadler PJ, Stewart AJ. Allosteric modulation of zinc speciation by fatty acids. Biochim Biophys Acta. 2013;1830:5456-5464.   DOI
114 Maret W. Zinc biochemistry: from a single zinc enzyme to a key element of life. Adv Nutr. 2013;4:82-91.   DOI
115 Cousins RJ. Absorption, transport, and hepatic metabolism of copper and zinc: special reference to metallothionein and ceruloplasmin. Physiol Rev. 1985;65:238-309.   DOI
116 Tran CD, Butler RN, Philcox JC, Rofe AM, Howarth GS, Coyle P. Regional distribution of metallothionein and zinc in the mouse gut: comparison with metallothionien-null mice. Biol Trace Elem Res. 1998;63:239-251.   DOI
117 Scott BJ, Bradwell AR. Identification of the serum binding proteins for iron, zinc, cadmium, nickel, and calcium. Clin Chem. 1983;29:629-633.
118 Taylor KM, Nicholson RI. The LZT proteins; the LIV-1 subfamily of zinc transporters. Biochim Biophys Acta. 2003;1611:16-30.   DOI
119 Sekler I, Sensi SL, Hershfinkel M, Silverman WF. Mechanism and regulation of cellular zinc transport. Mol Med. 2007;13:337-343.
120 Palmiter RD, Huang L. Efflux and compartmentalization of zinc by members of the SLC30 family of solute carriers. Pflugers Arch. 2004;447:744-751.   DOI
121 Powell SR, Aiuto L, Hall D, Tortolani AJ. Zinc supplementation enhances the effectiveness of St. Thomas' Hospital No. 2 cardioplegic solution in an in vitro model of hypothermic cardiac arrest. J Thorac Cardiovasc Surg. 1995;110:1642-1648.   DOI
122 Taylor KM, Morgan HE, Johnson A, Nicholson RI. Structure-function analysis of HKE4, a member of the new LIV-1 subfamily of zinc transporters. Biochem J. 2004;377:131-139.   DOI