A dynamic model of lactic acid fermentation using Lactococcus lactis was constructed, and a metabolic flux analysis (MFA) and metabolic control analysis (MCA) were performed to reveal an intensive metabolic understanding of lactic acid bacteria (LAB). The parameter estimation was conducted with COPASI software to construct a more accurate metabolic model. The experimental data used in the parameter estimation were obtained from an LC-MS/MS analysis and time-course simulation study. The MFA results were a reasonable explanation of the experimental data. Through the parameter estimation, the metabolic system of lactic acid bacteria can be thoroughly understood through comparisons with the original parameters. The coefficients derived from the MCA indicated that the reaction rate of L-lactate dehydrogenase was activated by fructose 1,6-bisphosphate and pyruvate, and pyruvate appeared to be a stronger activator of L-lactate dehydrogenase than fructose 1,6-bisphosphate. Additionally, pyruvate acted as an inhibitor to pyruvate kinase and the phosphotransferase system. Glucose 6-phosphate and phosphoenolpyruvate showed activation effects on pyruvate kinase. Hexose transporter was the strongest effector on the flux through L-lactate dehydrogenase. The concentration control coefficient (CCC) showed similar results to the flux control coefficient (FCC).
The cooling rate of a bioreactor was measured to estimate the heat generation by microbial cultivation production. The estimated heat production was calculated from the varying temperature of cooling water. It was used for monitoring growth and specific metabolic events for microbial cultivations. Metabolic heat measured was also adopted for a control parameter for fed-batch cultivation.
An unstructured mathematical model is presented for lactic acid fermentation based on the energy balance. The proposed model reflects the energy metabolic state and then predicts the cell growth, lactic acid production, and glucose consumption rates by relating the above rates with the energy metabolic rate. Fermentation experiments were conducted under various initial lactic acid concentrations of 0, 30, 50, 70, and 90 g/l. Also, a genetic algorithm was used for further optimization of the model parameters and included the operations of coding, initialization, hybridization, mutation, decoding, fitness calculation, selection, and reproduction exerted on individuals (or chromosomes) in a population. The simulation results showed a good fit between the model prediction and the experimental data. The genetic algorithm proved to be useful for model parameter optimization, suggesting wider applications in the field of biological engineering.
Jie Ma;Xu-Yun Hua;Mou-Xiong Zheng;Jia-Jia Wu;Bei-Bei Huo;Xiang-Xin Xing;Xin Gao;Han Zhang;Jian-Guang Xu
Korean Journal of Radiology
/
v.23
no.10
/
pp.986-997
/
2022
Objective: Whether metabolic redistribution occurs in patients with white matter hyperintensities (WMHs) on magnetic resonance imaging (MRI) is unknown. This study aimed 1) to propose a measure of the brain metabolic network for an individual patient and preliminarily apply it to identify impaired metabolic networks in patients with WMHs, and 2) to explore the clinical and imaging features of metabolic redistribution in patients with WMHs. Materials and Methods: This study included 50 patients with WMHs and 70 healthy controls (HCs) who underwent 18F-fluorodeoxyglucose-positron emission tomography/MRI. Various global property parameters according to graph theory and an individual parameter of brain metabolic network called "individual contribution index" were obtained. Parameter values were compared between the WMH and HC groups. The performance of the parameters in discriminating between the two groups was assessed using the area under the receiver operating characteristic curve (AUC). The correlation between the individual contribution index and Fazekas score was assessed, and the interaction between age and individual contribution index was determined. A generalized linear model was fitted with the individual contribution index as the dependent variable and the mean standardized uptake value (SUVmean) of nodes in the whole-brain network or seven classic functional networks as independent variables to determine their association. Results: The means ± standard deviations of the individual contribution index were (0.697 ± 10.9) × 10-3 and (0.0967 ± 0.0545) × 10-3 in the WMH and HC groups, respectively (p < 0.001). The AUC of the individual contribution index was 0.864 (95% confidence interval, 0.785-0.943). A positive correlation was identified between the individual contribution index and the Fazekas scores in patients with WMHs (r = 0.57, p < 0.001). Age and individual contribution index demonstrated a significant interaction effect on the Fazekas score. A significant direct association was observed between the individual contribution index and the SUVmean of the limbic network (p < 0.001). Conclusion: The individual contribution index may demonstrate the redistribution of the brain metabolic network in patients with WMHs.
Yoon, Chang-Yun;Lee, Misol;Kim, Seung Up;Lim, Hyunsun;Chang, Tae Ik;Kee, Youn Kyung;Han, Seung Gyu;Han, In Mee;Kwon, Young Eun;Park, Kyoung Sook;Lee, Mi Jung;Park, Jung Tak;Han, Seung Hyeok;Ahn, Sang Hoon;Kang, Shin-Wook;Yoo, Tae-Hyun
Kidney Research and Clinical Practice
/
v.36
no.1
/
pp.48-57
/
2017
Background: Hepatic steatosis measured with controlled attenuation parameter (CAP) using transient elastography predicts metabolic syndrome in the general population. We investigated whether CAP predicted metabolic syndrome in chronic kidney disease patients. Methods: CAP was measured with transient elastography in 465 predialysis chronic kidney disease patients (mean age, 57.5 years). Results: The median CAP value was 239 (202-274) dB/m. In 195 (41.9%) patients with metabolic syndrome, diabetes mellitus was more prevalent (105 [53.8%] vs. 71 [26.3%], P < 0.001), with significantly increased urine albumin-to-creatinine ratio (184 [38-706] vs. 56 [16-408] mg/g Cr, P = 0.003), high sensitivity C-reactive protein levels (5.4 [1.4-28.2] vs. 1.7 [0.6-9.9] mg/L, P < 0.001), and CAP (248 [210-302] vs. 226 [196-259] dB/m, P < 0.001). In multiple linear regression analysis, CAP was independently related to body mass index (${\beta}=0.742$, P < 0.001), triglyceride levels (${\beta}=2.034$, P < 0.001), estimated glomerular filtration rate (${\beta}=0.316$, P = 0.001), serum albumin (${\beta}=1.386$, P < 0.001), alanine aminotransferase (${\beta}=0.064$, P = 0.029), and total bilirubin (${\beta}=-0.881$, P = 0.009). In multiple logistic regression analysis, increased CAP was independently associated with increased metabolic syndrome risk (per 10 dB/m increase; odds ratio, 1.093; 95% confidence interval, 1.009-1.183; P = 0.029) even after adjusting for multiple confounding factors. Conclusion: Increased CAP measured with transient elastography significantly correlated with and could predict increased metabolic syndrome risk in chronic kidney disease patients.
Lee Chang-Woo;Kim Bonn-Won;Ra Jeong-Chan;Shin Sang-Tae;Kim Doo;Kim Jong-Taik;Hong Soon-Il
Journal of Veterinary Clinics
/
v.10
no.1
/
pp.65-94
/
1993
This study examined metabolic profiles of 1349 Holstein cows from 91 commercial herds. Thirteen parameters which are consisted of twelve blood components and body condition score were examined and their mean values. standard deviations and standard limits, which are 80% confidential limits, in each lactational stage were reported. The variations of each parameter affected by season, individual milk yield, adjusted corrected milk yield of herd. and lactation number were also reported. A model of metabolic profile test applicable to this country where the average number of cows in a herd is small as to be fifteen is designed. Metabolic profiles as reflected in each parameter were discussed in relation to adequacy of dietary intake for production, milk production, reproductive performance, and diseases, and the possible measure to improve productivity of dairy cows were proposed. Much of the variation in parameters was due to differences between herds, and less to differences between seasons, differences between individual milk yield, and differences between lactational stages. As the average herd size in this country is small, it is believed that all the cows in a herd must be sampled, and the individual result of each parameter was compared with the standard limit for each lactational stage, and the percentage of cows which are outside the standard limits in a herd was calculated to use as a criteria for evaluation of the herd. Data outside the 99% confidential limits were to be deleted at first, but when the trends of the data outside the 99% confidential limits are same as the trends of the data within 99% confidential limits, the deleted data must be reviewed again, otherwise some important informations would be missed. The mean concentration of blood urea nitrogen in this study was much higher than that was reported in England, U.S.A. and Japan, and it was similar to the upper limits reported in England, U.S.A. and Japan. So it was thought that the concentration of blood urea nitrogen is improper as a criteria for protein intake. The increase of serum total protein cocentration beyond standard limits was due to increase of serum globulin concentration in most of the cows. The correlation coefficient between serum and protein and serum globulin concentration was 0.83. Serum globulin concentration was negatively related to adjusted corrected milk of herd. Serum albumin, calcium and magnessium concentrations were negatively related to adjusted corrected milk of herd, which indicate that high-producing individual or high-producing herd have not taken sufficient protein/amino acids, calcium and magnessium. Packed cell volume was negatively related to adjusted corrected milk of the herd, and the trend was same In each lactational stage. The correlation coefficient between serum and packed cell volume was 0.16 and the correlation was very weak. Blood glucose concentration was lowest in early lactational stage, which indicates negative energy balance in early lactational stage. Blood glucose concentration was negatively related to adjusted corrected milk of herd from peak to late lactational stage, which indicates negative energy balance during the period in high-producing individuals or high-producing herds. Correlation coefficient between serum aspartate aminotransferase activity and serum ${\gamma}$-glutamyltransferase activity was 0.41, and this indicates that serum ${\gamma}$-glutamyltransferase should be included as a parameter of metabolic profile test to evaluate liver function. Body condition score of dairy cows in this country was lower than that of Japan in every lactational stages, and the magnitude of increase in body condition score during middle and late lactational stages was small. Metabolic profile can not be evaluated with solely nutritional intake. When an individual or large percentage of cows in a herd have adnormal values In parameters of metabolic profile test, veterinary clinician and nutritionist should cooperate so as to diagnose diseases and to calculate the e of no운ents simultaneously.
Kim, Joo Hwa;Kang, Min Jae;Shin, Choong Ho;Yang, Sei Won
Clinical and Experimental Pediatrics
/
v.52
no.3
/
pp.370-375
/
2009
Purpose : The risk of metabolic syndrome (MS) and cardiovascular disease in Turner syndrome (TS) patients is high. We analyzed metabolic factors in adults with TS and evaluated the metabolic risk of insulin resistance. Methods : Forty-three adults with TS were enrolled. The frequency of MS and the values of the metabolic factors were analyzed. Patients were divided into insulin resistant and non-resistant groups according to values of homeostasis model assessment of insulin resistance (HOMA-IR). The correlations of HOMA-IR with metabolic parameters were analyzed. Results : The frequency of MS was 7% and those of each metabolic parameter were as follows: insulin resistance, 16.3%; central obesity, 15.4%; hypertriglyceridemia, 2.3%; low HDL cholesterol, 9.3%; hypertension, 36.8%. The insulin-resistant group had significantly higher values of body mass index (BMI), waist circumference (WC), fasting plasma glucose (FPG), HOMA-IR, and systolic blood pressure (SBP) than the non-resistant group (P<0.05). HOMA-IR showed a significantly positive correlation with BMI, WC, FPG, and SBP and showed a negative correlation with HDL cholesterol. Conclusion : This study suggests that adults with TS have a high risk of metabolic syndrome, and insulin resistance is correlated with metabolic factors. Therefore, TS patients should have their metabolic parameters monitored regularly to minimize metabolic complications and prevent cardiovascular diseases.
Objective: The aim of the present study was to evaluate the associations between hematologic parameters related to systemic inflammation and insulin resistance-associated metabolic parameters in women with polycystic ovary syndrome (PCOS). Methods: Eighty-two women between the ages of 18 and 35 years who were diagnosed with PCOS were included in this study. A 2-hour 75-g oral glucose tolerance test (OGTT) was administered to all study participants; fasting and postprandial glucose and insulin levels were measured simultaneously during the 2-hour OGTT. Hematologic parameters were derived from a standard complete blood count and a differential count of fasting-state blood samples. The correlations between hematologic parameters and insulin resistance-associated clinical and metabolic parameters were evaluated using the Spearman rank correlation and partial correlation coefficients. Hematologic parameters related to systemic inflammation were compared between the two groups, categorized by the presence or absence of insulin resistance. Results: Significant differences in the absolute neutrophil count, absolute monocyte count, platelet count, and neutrophil-lymphocyte ratio were found between the insulin-resistant group and insulin-nonresistant group. Correlation analysis found that all hematological parameters, except for the platelet-lymphocyte ratio, were associated with at least one insulin resistance-associated metabolic parameter. However, these significant correlations between hematological and metabolic parameters were attenuated after controlling for the effects of other covariates using partial correlation analysis. Conclusion: The association between hematologic parameters indicative of systemic inflammation and insulin resistance-associated metabolic parameters seems to be strongly influenced by other anthropometric covariates in women with PCOS.
Objectives : The purpose of this study was to examine the changes in metabolic parameters and Positive and Negative Syndrome Scale (PANSS) scores of patients previously treated with atypical antipsychotic drugs other than paliperidone, after 8 weeks of treatment with paliperidone. Methods : Changes in body weight, body mass index, leptin, lipid levels, fasting glucose, and PANSS scores of patients who switched from other atypical antipsychotic drugs to paliperidone were measured after 8 weeks of treatment with paliperidone. We compared these results with those of patients who had not been treated with antipsychotic drugs for at least 2 weeks prior to treatment with paliperidone (antipsychotic drug-free patients). Results : The antipsychotic drug-free group (n = 9) did not show significant changes in metabolic parameters, but showed a significant improvement in total and subscale scores of PANSS. In the group that switched from other atypical antipsychotic drugs to paliperidone (n = 13), body weight, body mass index and fasting glucose level significantly increased, while total and subscale scores of PANSS significantly improved. Conclusions : Paliperidone treatment will benefit patients with schizophrenia who have been antipsychotic drug-free or who have had difficulty with other atypical antipsychotic drugs, with regard to their psychopathological state. However, if patients have been treated with other atypical antipsychotic drugs before switching to paliperidone, they could gain body weight or their fasting glucose level could increase over a short period because of a change in receptor number and sensitivity caused by the previously prescribed antipsychotic drugs, and hence, paliperidone should be prescribed with caution for these patients.
In this study, some of the recently reported data processing strategies were evaluated and modified based on their capabilities and a brief workflow for data mining was redefined for Q-TOF LC-MS based untargeted metabolomics. Commercial pooled human plasma samples were used for this purpose. An ultrafiltration procedure was applied on sample preparation. Sample set was analyzed through Q-TOF LC/MS. A C18 column (Agilent Zorbax 1.8 µM, 50 × 2.1 mm) was used for chromatographic separation. Raw chromatograms were processed using XCMS - R programming language edition and Isotopologue Parameter Optimization (IPO) was used to optimize XCMS parameters. The raw XCMS table was processed using MS Excel to find reliable and reproducible peaks. Totally 1650 reliable and reproducible potential metabolite peaks were found based on the data processing procedures given in this paper. The redefined dataset was upload into MetaboAnalyst platform and the identified metabolites were matched with 86 metabolic pathways. Thus, two list were obtained and presented in this study as supplement files. The first list is to present the retention times and m/z values of detected metabolite peaks. The second list is the metabolic pathways related with the identified metabolites. The briefly described data processing strategies and dataset presented in this study could be beneficial for the researchers working on untargeted metabolomics for processing their data and validating their results.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.