• 제목/요약/키워드: Metabolic activation

검색결과 427건 처리시간 0.029초

한국인 흡연자들의 담배 물질 대사 효소의 유전자 다형성에 따른 폐기능 차이 (Difference in Lung Functions according to Genetic Polymorphism of Tobacco Substance Metabolizing Enzymes of Korean Smokers)

  • 강윤정
    • 융합정보논문지
    • /
    • 제10권5호
    • /
    • pp.134-142
    • /
    • 2020
  • 흡연자들의 흡연 물질 대사효소의 유전적 다형성에 따른 폐기능의 차이를 보기 위하여 질병력과 정신과적 병력이 없는 신체적·정신적으로 건강한 만 20~27세 이하의 흡연자 31명( 남 29, 여 3)을 대상으로 연구를 진행하였다. 폐활량 측정기(Wright Respirometer, Ferraris Development and Engineering Co, Ltd, UK)를 이용하여, 노력성 폐활량(Forced vital capacity, FVC), 1초간 노력성 호기량(Forced expiratory volume at one second, FEV 1), 1초간 노력성 호기량의 노력성 폐활량에 대한 비(FEV1 % FVC)을 측정하였으며, 유전자 검사는 DNA로 PCR하여 CYP1A1과 TP53의 유전자 발현검사를 하였다. 실험결과 유전자 돌연변이형이 없는 TT와 Arg/Arg의 폐기능 평균값이 가장 높았으며, CYP1A1와 lung functions의 ANOVA 분석에서 FVC의 P-값이 0.049로 그룹 간의 차이가 있는 것으로 나타났다. 즉 담배성분의 대사 활성화와 연관이 많은 Cytochrome P-450 1A1 (CYP1A1) 유전자의 돌연변이형이 없을때 FVC의 값이 높게 나타난 것이다.

Salmonella typhimurium에 대(對)한 국균생산물질(麴菌生産物質)의 변이원성(變異原性) (Mutagenicity of the Material from Aspergillus to Salmonella typhimurium)

  • 정호권;김태운
    • 한국식품과학회지
    • /
    • 제14권1호
    • /
    • pp.67-71
    • /
    • 1982
  • 돌연변이(突然變異) 유발 물질(物質)에 의(依)하여 DNA손상(損傷)을 입고 야생균주(野生菌株)에서 볼 수 없었던 Histidine의 요구성(要求性)이 강(强)하게 나타나는 Salmonella typhimurium 균주(菌株) 등(等)은 손상(損傷)DNA회복성(回復性)이 예민하여 독성(毒性) 가능(可能)의 물질(物質)과 접촉(接觸)하면 쉽게 DNA변이(變異)를 일으켜 히스티딘 요구성(要求性)이 없는 야생균주(野生菌株)로 복귀(復歸)되는 원리가 최근(最近)에 Ames등(等)에 의(依)하여 밝혀졌다. 본연구(本硏究)는 이같은 성질이 표준화(標準化)된 Sal. typhimurium TA 98, TA 100, TA 1535, TA 1537 및 TA 1538을 이용(利用)하여 Asp. oryzac, Asp. kawachi등(等)이 생산(生産)하고 약탁주(藥濁酒)에 흔한 국산(麴酸)(Kojic acid)과 Asp. ochraceus, Asp. wentii 등(等)이 생산(生産)하고 luteoskyrin의 전구물질로 알려졌으며 또 의 항균성분(抗菌成分)인 emodin에 대하여 변이원성(變異原性)을 실험(實驗) 한 결과(結果)는 다음과 같다. 1. 쥐의 간(肝) microsome 효소계(酵素系)(S-9)의 대사활성을 거치지 않는 경우 kojic acid는 균주(菌株) TA 98와 TA 100에 대(對)하여 변이(變異)가 인정(認定)되지 않았다. 2. S-9 대사활성(代謝活性)을 거친 Kojic acid는 균주(菌株) TA 100의 경우는 약간 변이(變異)가 있었으나 인정(認定)되기 어려웠고 균주(菌株) TA 98에 대(對)하여는 큰 변이(變異)를 인정(認定)할 수 있었다. 3. Emodin도 S-9 대사활성(代謝活性)을 거칠 경우 균주(菌株) TA 1537에 대(對)하여 현저한 변이(變異)를 일으키고 있었다.

  • PDF

Genotoxicity Study of Bojungchisup-tang, an Oriental Herbal Decoction-in Vitro Chromosome Aberration Assay in Chinese Hamster Lung Cells and In Vivo Supravital-Staining Micronucleus Assay with Mouse Peripheral Reticulocytes

  • Ryu, Jae-Chun;Kim, Kyung-Ran;Kim, Hyun-Joo;Youn, Ji-Youn;Myung, Seung-Woon;Kim, Gyu-Hyung;Lee, Myeong-Jong;Chang, Il-Moo
    • Archives of Pharmacal Research
    • /
    • 제21권4호
    • /
    • pp.391-397
    • /
    • 1998
  • The toxicity evaluation of oriental herbal drugs is of great concern at present. Bojungchisup-tang (BCST, in Korean), a decocted medicine of oriental herbal mixture, is now well used in clinic at oriental hospitals for the treatment of edema of several diseases in practice. However, the toxicity of the oriental herbal decocted medicines such as genetic toxicity is not well defined until now. In this respect, to clarify the genetic toxicity of BCST, in vitro chromosome aberration assay with Chinese hamster lung (CHL) fibroblasts and in vivo supravital micronucleus assay with mouse peripheral reticulocytes were performed in this study. In the chromosome aberration assay, we used 5,000 $\mu\textrm{g}$/ml BCST as maximum concentration because no remarkable cytotoxicity in CHL cells was observed both in the presence and absence of S-9 metabolic activation system. No statistical significant differences of chromosome aberrations were observed in CHL cells treated with 5,000, 2,500 and 1,250 $\mu\textrm{g}$/ml BCST for 6 hour both in the presence and absence of S-9 metabolic activation. However, very weak positive result (6.5-8.0% aberration) of BCST was obtained in the absence of S-9 metabolic activation system at 5,000 $\mu\textrm{g}$/ml BCST when treated for 24 hour, i.e. 1.5 normal cell cycle time. And also, in vivo clastogenicity of BCST was studied by acridine orange-supravital staining micronucleus assay using mouse peripheral reticulocytes. We used 2,000 mg/kg as the highest oral dose in this micronucleus assay because no acute oral toxicity of BCST was observed in mice. The optimum induction time of micronucleated reticulocytes (MNRETS) was determined as 36 hours after oral administration of 2,000 mg/kg BCST. No significant differences of MNRETs between control and BCST treatment groups were observed in vivo micronucieus assay. From these results, BCST revealed very weak positive result in chromosome aberration assay in vitro with CHL cells and no clastogenicity in micronucieus assay in vivo.

  • PDF

Dietary Aloe Reduces Adipogenesis via the Activation of AMPK and Suppresses Obesity-related Inflammation in Obese Mice

  • Shin, Eun-Ju;Shin, Seul-Mee;Kong, Hyun-Seok;Lee, Sung-Won;Do, Seon-Gil;Jo, Tae-Hyung;Park, Young-In;Lee, Chong-Kil;Hwang, In-Kyeong;Kim, Kyung-Jae
    • IMMUNE NETWORK
    • /
    • 제11권2호
    • /
    • pp.107-113
    • /
    • 2011
  • Background: Metabolic disorders, including type II diabetes and obesity, present major health risks in industrialized countries. AMP-activated protein kinase (AMPK) has become the focus of a great deal of attention as a novel therapeutic target for the treatment of metabolic syndromes. In this study, we evaluated whether dietary aloe could reduce obesity-induced inflammation and adipogenesis. Methods: Male C57BL/6 obese mice fed a high-fat diet for 54 days received a supplement of aloe formula (PAG, ALS, Aloe QDM, and Aloe QDM complex) or pioglitazone (PGZ) and were compared with unsupplemented controls (high-fat diet; HFD) or mice fed a regular diet (RD). RT-PCR and western blot analysis were used to quantify the expression of obesity-induced inflammation. Results: Aloe QDM complex downregulated fat size through suppressed expression of scavenger receptors on adipose tissue macrophages (ATMs) compared with HFD. Both white adipose tissue (WATs) and muscle exhibited increased AMPK activation through aloe supplementation, and in particular, the Aloe QDM complex. Obesity-induced inflammatory cytokines (IL-$1{\beta}$ and -6) and $HIF1{\alpha}$ mRNA and protein were decreased markedly, as was macrophage infiltration by the Aloe QDM complex. Further, the Aloe QDM complex decreased the translocation of NF-${\kappa}B$ p65 from the cytosol in the WAT. Conclusion: Dietary aloe formula reduced obesity-induced inflammatory responses by activation of AMPK in muscle and suppression of proinflammatory cytokines in the WAT. Additionally, the expression of scavenger receptors in the ATM and activation of AMPK in WAT led to reduction in the percent of body fat. Thus, we suggest that the effect of the Aloe QDM complex in the WAT and muscle are related to activation of AMPK and its use as a nutritional intervention against T2D and obesity-related inflammation.

Increased Cellular NAD+ Level through NQO1 Enzymatic Action Has Protective Effects on Bleomycin-Induced Lung Fibrosis in Mice

  • Oh, Gi-Su;Lee, Su-Bin;Karna, Anjani;Kim, Hyung-Jin;Shen, AiHua;Pandit, Arpana;Lee, SeungHoon;Yang, Sei-Hoon;So, Hong-Seob
    • Tuberculosis and Respiratory Diseases
    • /
    • 제79권4호
    • /
    • pp.257-266
    • /
    • 2016
  • Background: Idiopathic pulmonary fibrosis is a common interstitial lung disease; it is a chronic, progressive, and fatal lung disease of unknown etiology. Over the last two decades, knowledge about the underlying mechanisms of pulmonary fibrosis has improved markedly and facilitated the identification of potential targets for novel therapies. However, despite the large number of antifibrotic drugs being described in experimental pre-clinical studies, the translation of these findings into clinical practices has not been accomplished yet. NADH:quinone oxidoreductase 1 (NQO1) is a homodimeric enzyme that catalyzes the oxidation of NADH to $NAD^+$ by various quinones and thereby elevates the intracellular $NAD^+$ levels. In this study, we examined the effect of increase in cellular $NAD^+$ levels on bleomycin-induced lung fibrosis in mice. Methods: C57BL/6 mice were treated with intratracheal instillation of bleomycin. The mice were orally administered with ${\beta}$-lapachone from 3 days before exposure to bleomycin to 1-3 weeks after exposure to bleomycin. Bronchoalveolar lavage fluid (BALF) was collected for analyzing the infiltration of immune cells. In vitro, A549 cells were treated with transforming growth factor ${\beta}1$ (TGF-${\beta}1$) and ${\beta}$-lapachone to analyze the extracellular matrix (ECM) and epithelial-mesenchymal transition (EMT). Results: ${\beta}$-Lapachone strongly attenuated bleomycin-induced lung inflammation and fibrosis, characterized by histological staining, infiltrated immune cells in BALF, inflammatory cytokines, fibrotic score, and TGF-${\beta}1$, ${\alpha}$-smooth muscle actin accumulation. In addition, ${\beta}$-lapachone showed a protective role in TGF-${\beta}1$-induced ECM expression and EMT in A549 cells. Conclusion: Our results suggest that ${\beta}$-lapachone can protect against bleomycin-induced lung inflammation and fibrosis in mice and TGF-${\beta}1$-induced EMT in vitro, by elevating the $NAD^+$/NADH ratio through NQO1 activation.

비만, 폐쇄성 수면무호흡증과 대사장애 (Obesity, Obstructive Sleep Apnea, and Metabolic Dysfunction)

  • 김진관;표상신;윤대위
    • 대한임상검사과학회지
    • /
    • 제53권4호
    • /
    • pp.285-295
    • /
    • 2021
  • 수면은 필수적인 생리적 기능일 뿐만 아니라 인간의 성장, 성숙 및 전반적인 건강을 증진시키는 데 중요한 역할을 한다. 수면과 수면 장애가 대사성 질환에 미치는 영향에 대한 관심이 높아지고 있다. 폐쇄성 수면무호흡증은 일반적인 건강 문제이며, 지난 10년 동안 비만율의 증가로 인해 더 두드러진 대사 질환과 함께 폐쇄성 수면무호흡증의 유병률이 현저하게 증가했다. 폐쇄성 수면무호흡증에 의한 대사성 질환을 유발하는 근본적인 메커니즘은 다인성일 가능성이 높으며, 완전히 밝혀지지 않고 있지만, 염증과 산화 스트레스의 활성화와 식욕 조절 호르몬의 조절 장애는 폐쇄성 수면무호흡증 환자에게 나타나는 대사 기능 장애와 비만의 중요한 병리 생리학적 성분으로 나타났다. 본 연구에서는 폐쇄성 수면무호흡증과 대사질환의 연관성에 대한 연구 현황과 폐쇄성 수면무호흡증이 이러한 질병을 유발하는 병리생리학적 메커니즘에 대해 검토하고자 한다. 이를 통해 폐쇄성 수면무호흡증과 비만, 그리고 폐쇄성 수면무호흡증과 대사 기능 장애 사이의 잠재적인 상호작용을 이해할 수 있다.

형질전환된 각질형성세포에서 생약추출물에 의한 $NF-{\kappa}B$ 활성화 억제효과 탐색 (Screening of Crude Drugs for the Inhibitory Effect on $NF-{\kappa}B$ Activation in Transfectant HaCaT Cells)

  • 안광석;김성기;문기영;한범수;강삼식;김영식
    • 생약학회지
    • /
    • 제34권2호통권133호
    • /
    • pp.156-160
    • /
    • 2003
  • $NF-{\kappa}B$ (nuclear factor-kappa B) plays a particularly central role in epidermal biology. It has been established that ultraviolet radiation (UVR) is one of the mechanisms to induce the activation of $NF-{\kappa}B$ in human skin. We previously demonstrated that melanogenic inhibitors may act through the inhibition of $NF-{\kappa}B$ activation in keratinocytes. In order to find another type of melanogenic inhibitors of $NF-{\kappa}B$ activation, various kinds of the extracts from crude drugs $(30\;{\mu}g/ml)$ were preincubated with transfectant HaCaT cells for 3 hrs and then UVR $(60\;mj/cm^2)$ was irradiated. UVR-exposed cells were incubated for another 6 hrs to measure the $NF-{\kappa}B$ activity. $NF-{\kappa}B$ activation was measured with the secreatory alkaline phosphates (SEAP) reporter gene assay using a fluorescence detection method. Among natural products, Lycium chinense, Acanthopanax senticosus, Angelica koreana, Kalopanax pictus and Asparagus cochinchinensis were the most potent inhibitors of $NF-{\kappa}B$ activation by UVR. These observations suggest that some crude drugs might act partially through the modulation of the synthesis of melanotrophic factors to decrease melanogenesis in keratinocytes.

구운 돼지고기 추출물의 돌연변이 유발능과 이에 미치는 마늘의 영향 (The mutagenicity of extracts from grilled pork belly and the effect of garlic on it)

  • 이철원;홍기형;김영배
    • 환경위생공학
    • /
    • 제6권1호
    • /
    • pp.63-82
    • /
    • 1991
  • This study was carried out to examine the mutagenicity of extracts from grilled pork belly and the effect of garlic on it by using Arnes test. And in order to imitate the in vivo metabolic activation system of the mutagens, the enzymatic activation system was adopted. The results are summarlized as follows: 1. The degree of browning in pork belly extracts increased with the increasing heating intensity of the grilling. 2. When pork belly grilled at "low" heating intensity, no mutagenicity was detected. However with the samples grilled at "medium" and "high" heating intersity, mutagenicity was recognized. 3. The mutagenicity of grilled pork belly extract decreased remarkabley with the addition of S-9 mix. 4. The mutagenicity of grilled pork belly extract decreased with the addition of garlic extract.

  • PDF

The Relationship between Mitochondria and NLRP3 Inflammasome

  • Lee, Hyun Ah;Na, Hee Sam;Chung, Jin
    • International Journal of Oral Biology
    • /
    • 제42권3호
    • /
    • pp.85-90
    • /
    • 2017
  • Mitochondria participate in various intracellular metabolic pathways such as generating intracellular ATP, synthesizing several essential molecules, regulating calcium homeostasis, and producing the cell's reactive oxygen species (ROS). Emerging studies have demonstrated newly discovered roles of mitochondria, which participate in the regulation of innate immune responses by modulating NLRP3 inflammasomes. Here, we review the recently proposed pathways to be involved in mitochondria-mediated regulation of inflammasome activation and inflammation: 1) mitochondrial ROS, 2) calcium mobilization, 3) nicotinamide adenine dinucleotide ($NAD^+$) reduction, 4) cardiolipin, 5) mitofusin, 6) mitochondrial DNA, 7) mitochondrial antiviral signaling protein. Furthermore, we highlight the significance of mitophagy as a negative regulator of mitochondrial damage and NLRP3 inflammasome activation, as potentially helpful therapeutic approaches which could potentially address uncontrolled inflammation.

Factors Influencing Satellite Cell Activity during Skeletal Muscle Development in Avian and Mammalian Species

  • Nierobisz, Lidia S;Mozdziak, Paul E
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제21권3호
    • /
    • pp.456-464
    • /
    • 2008
  • Avian and mammalian skeletal muscles exhibit a remarkable ability to adjust to physiological stressors induced by growth, exercise, injury and disease. The process of muscle recovery following injury and myonuclear accretion during growth is attributed to a small population of satellite cells located beneath the basal lamina of the myofiber. Several metabolic factors contribute to the activation of satellite cells in response to stress mediated by illness, injury or aging. This review will describe the regenerative properties of satellite cells, the processes of satellite cell activation and highlight the potential role of satellite cells in skeletal muscle growth, tissue engineering and meat production.