Browse > Article
http://dx.doi.org/10.5713/ajas.2008.r.02

Factors Influencing Satellite Cell Activity during Skeletal Muscle Development in Avian and Mammalian Species  

Nierobisz, Lidia S (Department of Poultry Science, College of Agriculture and Life Sciences North Carolina State University)
Mozdziak, Paul E (Department of Poultry Science, College of Agriculture and Life Sciences North Carolina State University)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.21, no.3, 2008 , pp. 456-464 More about this Journal
Abstract
Avian and mammalian skeletal muscles exhibit a remarkable ability to adjust to physiological stressors induced by growth, exercise, injury and disease. The process of muscle recovery following injury and myonuclear accretion during growth is attributed to a small population of satellite cells located beneath the basal lamina of the myofiber. Several metabolic factors contribute to the activation of satellite cells in response to stress mediated by illness, injury or aging. This review will describe the regenerative properties of satellite cells, the processes of satellite cell activation and highlight the potential role of satellite cells in skeletal muscle growth, tissue engineering and meat production.
Keywords
Muscle Regeneration; Muscle Development; Mitogenic Factors; Meat Production; Poultry; Mammals;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 Mozdziak, P. E., E. Schultz and R. G. Cassens. 1994. Satellite cell mitotic-activity in posthatch turkey skeletal-muscle growth. Poult. Sci. 73:547-555.   DOI   ScienceOn
2 Mozdziak, P. E, E. Schultz and R. G. Cassens. 1997. Myonuclear accretion is a major determinant of avian skeletal muscle growth. Am. J. Physiol. Cell. Physiol. 272:C565-C571.   DOI
3 Moss, F. P. and C. P. Leblond. 1970. Nature of dividing nuclei in skeletal muscle of growing rats. J. Cell. Biol. 44:459-462.   DOI   ScienceOn
4 Schultz, E. and K. M. McCormick. 2000. Skeletal muscle satellite cells. Rev. Physiol. Biochem. Pharmacol. 123:213-257.
5 Pophal, S., P. E. Mozdziak and S. L. Vieira. 2004. Satellite cell mitotic activity of broilers fed differing levels of lysine. Int. J. Poult. Sci. 3:758-763.   DOI
6 Musaro, A., K. McCullagh, A. Paul, L. Houghton, G. Dobrowolny, M. Molinaro, E. R Barton, H. L. Sweeney and N. Rosenthal. 2001. Localized Igf-1 transgene expression sustains hypertrophy and regeneration in senescent skeletal muscle. Nat. Genet. 27:195-200.   DOI   ScienceOn
7 Pavlath, G. 1996. Isolation, purification and growth of skeletal muscle cells. In: Methods of Molecular Medicine: Human Cell Culture Protocols (Ed. G. E. Jones). Totawa, NJ, USA. pp. 307-318.
8 Allbrook, D. B., M. F. Han and A. E. Hellmuth. 1971. Population of muscle satellite cells in relation to age and mitotic activity Pathol. 3:233.   DOI
9 Bondesen, B. A., S. T. Mills, K. M. Kegley and G. K. Pavlath. 2004. The COX2 pathway is essential during early stages of skeletal muscle regeneration. Am. J. Physiol. Cell. Physiol. 287:C475-C483.   DOI   ScienceOn
10 Kurek, J. B., J. J. Bower, M. Romanella, F. Koentgen, M. Murphy and L. Ausitn. 1997. The role of leukemia inhibitory factor in skeletal muscle regeneration. Muscle Nerve, 20:815-822.   DOI   ScienceOn
11 LeRoith, D., M. McGuinness, J. Shemer, B. Stannard, F. Lanau, T. N. Faria, H. Kato, H. Werner, M. Adamo and C. T. Roberts. 1992. Insulin-like growth factors. Biol. Signals 1:173-181.   DOI
12 Martin, J. F., L. Li and E. N. Olson. 1992. Repression of Myogenin function by TGF-$\beta$1 is targeted at the basic helixloop- helix motif and is independent of E2A products. J. Biol. Chem. 267:10956-10960.
13 Marzaro, M., M. T. Conconi, L. Perin, S. Giuliani, P. Gomba, P. De Coppi, G. P. Perrino, P. P. Parnigotto and G. G. Nurssdorfer. 2002. Autologous satellite cell seeding improves in vivo biocompatibility of homologous muscle acellular matrix implants. Int. J. Mol. Med. 10:177-182.
14 McFarland, D. C., X. Liu, S. G. Velleman, C. Zeng, C. S. Coy and J. E. Pesall. 2003. Variation in fibroblast growth factor response and heparin sulfate proteoglycan production in satellite cell populations. Comp. Biochem. Physiol. 134:341- 351.
15 Lescaudron, L. E. Peltekian, J. Fontaine-Perus, D. Paulin, M. Zampieri, L. Garcia and E. Parrish. 1999. Blood borne macrophages are essential for the triggering of muscle regeneration following muscle transplant. Neuromuscul. Disord. 9:72-80.   DOI   ScienceOn
16 Mansouri, A., G. Goudreau and P. Gruss. 1999. Pax genes and their role in organogenesis. Cancer Res. 59:1707-1710.
17 Megeney, L. A., B. Kablar, K. Garrett, J. E. Anderson and M. A. Rudnicki. 1996. MyoD is required for myogenic stem cell function in adult skeletal muscle. Genes. Dev. 10:1173-1183.   DOI   ScienceOn
18 Bach, A. D., J. P. Beier and R. E. Horch. 2004. Skeletal muscle tissue engineering. J. Cell. Mol. Med. 8:413-422.   DOI   ScienceOn
19 Ascadi, G., G. Dickson, D. R. Love, A. Jani, F. S Walsh, A. Gurusinghe, J. A. Wolff and K. E. Davies. 1991. Human dystrophin expression in mdx mice after intramuscular injection of DNA constructs. Nature 352:815-818.   DOI   ScienceOn
20 Asmundson, V. S. and L. M. Julian. 1956. Inherited muscle abnormality in the domestic fowl. J. Hered. 47:248-252.   DOI
21 Allen, R. E. and L. K. Boxhorn. 1989. Regulation of skeletal muscle satellite cell proliferation and differentiation by transforming growth factor-beta, insulin-like growth factor I, and fibroblast growth factor. J. Cell. Physiol. 138:311-315.   DOI
22 Allen, R. E., S. M. Sheehan, R. G. Taylor, T. L. Kendall and G. M. Rice. 1995. Hepatocyte growth factor activates quiescent skeletal muscle satellite cells in vitro. J. Cell. Physiol. 165: 307-312.   DOI   ScienceOn
23 Adams, G. R., F. Haddad and K. M. Baldwin. 1999. Time course of changes in markers of myogenesis in overloaded rat skeletal muscles. J. Appl. Physiol. 87:1705-1712.   DOI
24 King, B. D. and R. K. Entrikin. 1991. Thyroidal involvement in the expression of avian muscular dystrophy. Life. Sci. 48:909-916.   DOI   ScienceOn
25 Kocamis, H., D. C. McFarland and J. Killefer. 2001. Terminal expression of growth factor genes during myogenesis of satellite cells derived from the biceps femoris and pectoralis major muscles of the chicken. J. Cell Physiol. 186:146-152.   DOI   ScienceOn
26 Carlson, B. M. and J. A. Faulkner. 1988. Reinnervation of longterm denervated muscle freely grafted into an innervated limb. Exp. Neurol. 102:50-56.   DOI   ScienceOn
27 Conboy, I. M., M. J. Conboy, G. M. Smythe and T. A. Rando. 2003. Notch-mediated restoration of regenerative potential to aged muscle. Sci. 302:1575-1577.   DOI   ScienceOn
28 Conboy, I. M., M. J. Conboy, A. J. Wagers, E. R. Girma, I. L. Weissman and T. A. Rando. 2005. Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature 433:760-764.   DOI   ScienceOn
29 Borisov, A. B., E. I. Dedkov and B. M. Carlson. 2005. Differentiation of activated satellite cells in denervated muscle following single fusions in situ and in cell culture. Histochem. Cell. Biol. 124:13-23.   DOI   ScienceOn
30 Carlson, B. M. and J. A. Faulkner. 1989. Muscle transplantation between young and old rats: age of host determines recovery. Am. J. Physiol. 256:C1262-1266.   DOI
31 Carson, J. A. and S. E. Alway. 1996. Stretch overload-induced satellite cell activation in slow tonic muscle from adult and aged Japanese quail. Am. J. Physiol. 270:C578-C584.   DOI
32 Bischoff, R. 1986. Proliferation of muscle satellite cells on intact myofibers in culture. Dev. Biol. 115:129-139.   DOI   ScienceOn
33 Blau, H. M., T. R. Brazelton and J. M. Weimann. 2001. The evolving concept of a stem cell: entity or function? Cell 105:829-841.   DOI   ScienceOn
34 Bonassar, L. J. and C. A. Vacanti. 1998. Tissue engineering: the first decade and beyond. J. Cell. Biochem. 30-31:297-303.
35 Gibson, M. C. and E. Schultz. 1983. Age-related differences in absolute numbers of skeletal muscle satellite cells. Muscle Nerve. 6:574-580.   DOI   ScienceOn
36 Dangott, B., E. Schultz and P. E. Mozdziak. 2000. Dietary creatine monohydrate supplementation increases satellite cell mitotic activity during compensatory hypertrophy. Int. J. Sports Med. 21:13-16.   DOI   ScienceOn
37 Darr, K. C. and E. Schultz. 1987. Exercise-induced satellite cell activation in growing and mature skeletal muscle. J. Appl. Physiol. 63:1816-1821.   DOI
38 Dedkov, E. L., T. Y. Kostrominova, A. B. Borisov and B. M. Carlson. 2001. Reparative myogenesis in long-term denervated skeletal muscles of adult rats results in a reduction of the satellite cell population. Anat. Rec. 263:139-154.   DOI   ScienceOn
39 Gorospe, J. R. M., M. D. Tharp, J. Hinckley, J. N. Kornegay and E. P. Hoffman. 1994. A role for mast-cells in the progression of Duchenne Muscular-Dystrophy- correlations in dystrophindeficient humans, dogs, and mice. J. Neurol. Sci. 122:44-56.   DOI   ScienceOn
40 Charge, S. B. and M. A. Rudnicki. 2004. Cellular and molecular regulation of muscle regeneration. Physiol. Rev. 84:209-238.   DOI   ScienceOn
41 Cohn, R. D., M. D. Henry, D. E. Michele, R. Barresi, F. Saito, S. A. Moore, J. D. Flanagan, M. W. Skwarchuk, M. E. Robbins, J. R. Mendell, C. A. Collins, I. Olsen, P. S. Zammit, L. Heslop, A. Petrie, T. A. Partridge and J. E. Morgan. 2005. Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell 122:289-301.   DOI   ScienceOn
42 Greene, E. A. and R. E. Allen. 1991. Growth factor regulation of bovine satellite cell growth in vitro. J. Anim. Sci. 69:146-152.   DOI
43 Conboy, I. M. and T. A. Rando. 2002. The regulation of Notch signaling controls satellite cell activation and cell fate determination in postnatal myogenesis. Dev. Cell 2:397-409.
44 Kami, K. and E. Senba. 1998. Localization of leukemia inhibitory factor and interleukin-6 messenger ribonucleic acids in regenerating rat skeletal muscle. Muscle Nerve 21:819-822.   DOI   ScienceOn
45 Katagiri, T., S. Akiyama, M. Namiki, M. Komaki, A. Yamaguchi, V. Rosen, M. Wozney, A. Fujisawa-Sehara and T. Suda. 1997. Bone morphogenic protein-2 inhibits terminal differentiation of myogenic cells by suppressing the transcriptional activity of MyoD and myogenin. Exp. Cell. Res. 230:342-351.   DOI   ScienceOn
46 Halevy, O., Y. Plestun, M. Z. Allouh, B. W. C. Rosser, Y. Rinkevich, R. Reshef, I. Rozenboim, M. Wieklinski-Lee and Z. Yablonka-Reuveni. 2004. Pattern of Pax7 expression during myogenesis in the posthatch chicken establishes a model for satellite cell differentiation and renewal. Dev. Dyn. 231:489-502.   DOI   ScienceOn
47 Hawke, J. T. and D. J. Garry. 2001. Myogenic satellite cells: physiology to molecular biology. J. Appl. Physiol. 91:534-551.   DOI
48 Imamura, M., K. Araishi, S. Noguchi and S. Ebashi. 2000. A sarcoglycan-dystroglycan complex anchors Dp116 and utrophin in the peripheral nervous system. Hum. Mol. Gen. 9:3091-100.   DOI   ScienceOn
49 Coolican, S. A., D. S. Samuel, D. Z. Ewton, F. J. McWade, and J. R. Florini. 1997. The mitogenic and myogenic actions of insulin-like growth factors utilize distinct signaling pathways. J. Biol. Chem. 272:6653-6662.   DOI   ScienceOn
50 Cote, P. D., H. Moukles, M. Lindenbaum and S. Carbonetto. 1999. Chimaeric mice deficient in dystroglycans develop muscular dystrophy and have disrupted myoneural synapses. Nat. Genet. 23:338-342.   DOI   ScienceOn
51 Webster, C. and H. M. Blau. 1990 Accelerated age-related decline in replicative life-span of Duchenne muscular dystrophy myoblasts: implications for cells and gene therapy. Somat. Cell. Mol. Genet. 16:557-565.   DOI   ScienceOn
52 Wakeford, S., D. J. Watt and T. A. Partridge. 1991. X-irradiation improves mdx mouse muscle as a model of myofiber loss in DMD. Muscle Nerve 14:42-50.   DOI   ScienceOn
53 Wagers, A. J. and I. Weissman. 2004. Stem cell plasticity. Cell 116:639-648.   DOI   ScienceOn
54 Wagers, A. J. and I. M. Conboy. 2005. Cellular and molecular signatures of muscle regeneration: current concepts and controversies in adult myogenesis. Cell 122:659-667.   DOI   ScienceOn
55 Tatsumi, R., J. E. Anderson, C. J. Nevoret, O. Halevy and R. E. Allen. 1998. HGF/SF is present in normal adult skeletal muscle and is capable of activating satellite cells. Dev. Biol. 194:114-128.   DOI   ScienceOn
56 Tidball, J. G. 2006. Inflammatory processes in muscle injury and repair. Am. J. Physiol. Regul. Integr. Comp. Physiol. 288:R345-R353.
57 Viguie, C. A., D. X. Lu, S. K. Huang, H. Rengen and B. M. Carlson. 1997. Quantitative study of the effects of long-term denervation on the extensor digitorum longus muscle of the rat. Anat. Rec. 248:346-354.   DOI   ScienceOn
58 Williamson, R. A. and K. P. Campbell. 2002. Disruption of Dag1 in differentiated skeletal muscle reveals a role for dystroglycan in muscle regeneration. Cell 110:639-648.   DOI   ScienceOn
59 Iwata, Y., Y. Pan, H. Hanada, T. Yoshida and M. Shigekawa. 1996. Dystrophin-glycoprotein complex purified from hamster cardiac muscle. Comparison of the complexes from cardiac and skeletal muscles of hamster and rabbit. J. Mol. Cell Cardiol. 28:2501-2509.   DOI   ScienceOn
60 Sheenan, S. M. and R. E. Allen. 1999. Skeletal muscle satellite cell proliferation in response to members of the fibroblast growth factor family and hepatocyte growth factor. J. Cell. Physiol. 181:499-506.   DOI   ScienceOn
61 Nara, H., D. Yoshizawa, H. Aso and T. Yamaguchi. 2001. Bovine myoblast differentiation during the myogenesis. Asian-Aust. J. Anim. Sci. 14:100-105.
62 Sherwood, R. I., J. L. Christensen, I. M. Conboy, M. J. Conboy, T. A. Rando, I. L. Weissman and A. J. Wagers. 2004. Isolation of adult mouse myogenic progenitors: functional heterogeneity of cells within and engrafting skeletal muscle. Cell 119:543-554.   DOI   ScienceOn
63 Singh, N. K., H. S. Chae, I. H. Hwang, Y. M. Yoo, C. N. Ahn, H. J. Lee, H. J. Park and H. Y. Chung. 2007. 2, 4- thiazolidindion induced plasticity of myoblast (C2C12) and satellite cells (porcine) - a comparative study. Asian-Aust. J. Anim. Sci. 20:1115-1119.   과학기술학회마을   DOI
64 Yablonka-Reuveni, Z. and B. Paterson. 2001. MyoD and myogenin expression patterns in cultures of fetal and adult chicken myoblasts. J. Histochem. Cytochem. 49:455-462.   DOI   ScienceOn
65 Yablonka-Reuveni, Z. and J. E. Anderson. 2006. Satellite cells from dystrophic (Mdx) mice display accelerated differentiation in primary cultures and in isolated myofibers. Dev. Dyn. 235:203-212.   DOI   ScienceOn
66 Zammit, P. S., J. P. Golding, Y. Nagata, V. Hudon, T. A. Partridge and J. R. Beauchamp. 2004. Muscle satellite cells adopt divergent fates: a mechanism for self-renewal? J. Cell. Biol. 166:347-357.   DOI   ScienceOn
67 Zentella, A. and J. Massague. 1992. Transforming growth factor beta induces myoblast differentiation in the presence of mitogens. Proc. Natl. Acad. Sci. USA 89:5176-5180.   DOI   ScienceOn
68 Jin, E.-J., I. Kim, C. Y. Lee and B. C. Park. 2006. Suppressed cell proliferation and differentiation following an over-expression of myostatin is associated with inhibited expression of insulinlike growth factor II and myogenin in rat L6 myoblasts. Asian- Aust. J. Anim. Sci. 19:1508-1513.   과학기술학회마을   DOI
69 Minshall, R. D., D. C. McFarland and M. E. Doumit. 1990. Interaction of insulin-like growth factor I with turkey satellite cells and satellite cell-derived myotubes. Domest. Anim. Endocrinol. 7:413-424.   DOI   ScienceOn
70 Mozdziak, P. E., P. M. Pulvermacher and E. Schultz. 2000. Unloading of juvenile muscle results in a reduced muscle size 9 wk after reloading. J. Appl. Physiol. 88:158-164.   DOI
71 Saito, F., M. Blank, M. Schroder, H. Manya, T. Shimizu, K. Campbell, T. Endo, M. Mizutani, S. Kroger and K. Matsumura. 2005. Aberrant glycosylation of alpha-Dystroglycan causes defective binding of laminin in the muscle of chicken Muscular Dystrophy. FEBS Letters 579:2359-2363.   DOI   ScienceOn
72 Sakuma, K., K. Watenabe, M. Sano, S. Kitajima, K. Sakamoto, I. Uramoto and T. Totsuka. 2000. The adaptive response of transforming growth factor-$\beta$2 and -$\beta$RII in the overloaded, regenerating and denervated muscles of rats. Acta. Neuropathol. 99:177-185.   DOI   ScienceOn
73 Seale, P., L. A. Sabourin, A. Girgis-Gabardo, A. Mansouri, P. Gruss and M. A. Rudnicki. 2000. Pax7 is required for the specification of myogenic satellite cells. Cell 102:777-786.   DOI   ScienceOn
74 Seale, P., A. Asakura and M. A. Rudnicki. 2001. The potential of muscle stem cells. Dev. Cell 1:333-342.   DOI   ScienceOn
75 Miller, K. J., D. Thaloor, S. Matteson and G. K. Paviath. 2000. Hepatocyte growth factor affects satellite cell activation and differentiation in regenerating skeletal muscle. Am. J. Physiol. Cell. Physiol. 287:C174-C181.