• Title/Summary/Keyword: Metabolic Enzymes

Search Result 372, Processing Time 0.019 seconds

Cloning, Expression, and Characterization of a Cold-Adapted Shikimate Kinase from the Psychrophilic Bacterium Colwellia psychrerythraea 34H

  • Nugroho, Wahyu Sri Kunto;Kim, Dong-Woo;Han, Jong-Cheol;Hur, Young Baek;Nam, Soo-Wan;Kim, Hak Jun
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.12
    • /
    • pp.2087-2097
    • /
    • 2016
  • Most cold-adapted enzymes possess higher $K_m$ and $k_{cat}$ values than those of their mesophilic counterparts to maximize the reaction rate. This characteristic is often ascribed to a high structural flexibility and improved dynamics in the active site. However, this may be less convincing to cold-adapted metabolic enzymes, which work at substrate concentrations near $K_m$. In this respect, cold adaptation of a shikimate kinase (SK) in the shikimate pathway from psychrophilic Colwellia psychrerythraea (CpSK) was characterized by comparing it with a mesophilic Escherichia coli homolog (EcSK). The optimum temperatures for CpSK and EcSK activity were approximately $30^{\circ}C$ and $40^{\circ}C$, respectively. The melting points were $33^{\circ}C$ and $45^{\circ}C$ for CpSK and EcSK, respectively. The ${\Delta}G_{H_2O}$ (denaturation in the absence of denaturing agent) values were 3.94 and 5.74 kcal/mol for CpSK and EcSK, respectively. These results indicated that CpSK was a cold-adapted enzyme. However, contrary to typical kinetic data, CpSK had a lower $K_m$ for its substrate shikimate than most mesophilic SKs, and the $k_{cat}$ was not increased. This observation suggested that CpSK may have evolved to exhibit increased substrate affinity at low intracellular concentrations of shikimate in the cold environment. Sequence analysis and homology modeling also showed that some important salt bridges were lost in CpSK, and higher Arg residues around critical Arg 140 seemed to increase flexibility for catalysis. Taken together, these data demonstrate that CpSK exhibits characteristics of cold adaptation with unusual kinetic parameters, which may provide important insights into the cold adaptation of metabolic enzymes.

Associations between 24-hour Urine Sodium Excretion Level and Obesity-related Metabolic Risk Factors (비만인과 정상인에서 24시간 소변 내 나트륨 배출량과 비만관련 대사위험지표의 관련성)

  • Oh, Hyun Woo;Kim, Hyun Jung;Jun, Dae Won;Lee, Seung Min
    • Korean Journal of Community Nutrition
    • /
    • v.20 no.6
    • /
    • pp.460-467
    • /
    • 2015
  • Objectives: Excess sodium intake has been linked to obesity and obesity-related indices. However, the scientific evidence for this association is inadequate. The purpose of this study was to investigate the association between urinary sodium excretion and obesity-related indices among Korean adults. Methods: A convenience sample of 120 subjects (60 obese and 60 non-obese subjects) were recruited applying frequency matching for sex and age between two groups. Sodium intake level was assessed through 24-hour urine collection. Obesity-related metabolic risk factors, including fasting blood lipid indices, subcutaneous and visceral fat through computed tomography (CT), insulin resistance indices, blood pressure and liver enzymes were measured in all subjects. These obesity-related metabolic risk factors were compared between obese and non-obese group according to sodium excretion levels (<110 mEq/day, 110~180 mEq/day, >180 mEq/day). Results: After adjusting for age, gender, health behaviors (smoking, exercise, drinking), and energy intake, several obesity-related metabolic risk factors, including abdominal circumference, body fat percentage, subcutaneous and visceral fat, triglyceride, and systolic blood pressure were found to be significantly deteriorated as the sodium excretion level increases. In addition, multivariate adjusted-odds ratios of abdominal obesity, high blood triglyceride, and high blood pressure were found significantly higher in the highest sodium excretion group compared to the lowest group. The mean number of metabolic syndrome risk factors was also significantly greater in the highest sodium excretion group than in the lowest group. Conclusions: The current study findings suggested that high sodium intake can affect obesity and metabolic syndrome risk negatively, implying the necessity of future research on low-sodium diet intervention in relation to obesity and related health problems.

The enzymatic Studies on Metabolic Pathways in Thiobacillus conctetivorus (Thiobacillus concretivorus의 대사경로에 관한 효소학적 연구)

  • 하영칠
    • Korean Journal of Microbiology
    • /
    • v.11 no.1
    • /
    • pp.1-18
    • /
    • 1973
  • A study was made on enzymes of carbohydrate metabolism in T. concretivorus grown with and without glucose. The present results show that T. concretivorus possesses high activities of pentose shunt pathway and related enzymes, glucokinase, G-6-P dehydrogenase, 6-PG dehydrogenase, and phosphoglucoisomerase, but low activities of enzymes unique to EMP(fructose-1, 6-diphosphate aldolase). Although the synthesis of the latter enzymes remains largely unaffected by the growth enviroment, that of the former is stimulated by glucose. And the failure to detect ED pathway enzymes in cells grown in thiosulate or thiosulfate-glucose medium eliminates the ED pathway as a significant route of glucose catabolism in T.concretivorus. These results suggest that pentose shunt pathway performs an energetic role in glucose metabolism by T.concretivorus with EMP as a subway. The absence of ED pathway and the presence of pentose shunt pathway which is the major route of catabolism in T.concretivorus are similar to those of other obligately chemolitho-trophic thiobacilli. The G-6-P and 6-PG dehydrogenase are both NAD and NADP specific, but MAD predominant. However, the 3-PGAL dehydrogenase is only NAD specific. Since the specific activity of 3-PGAL generated from glucose is converted mainly into pyruvate which is channeled into the TCA cycle. All enzymes of the TCA cycle tested and NADH oxidase are detected in the cells of T.concretivorus grown in thiosulfate. The specific activities of fumarase and isocitrate dehydrogenase are high and others are low. The presence of two isocitrate dehydrogenase (NAD-and NADP-linked) may have important regulatory function for this organism. The activity of NAD-oxidase, which is implicated in the energy generating metabolism, was very high in the crude cell-free extract of T.concretivorus, recording 55.11 m$\mu$ mole/min/mg protein. This well coincides with the fact that activities of NAD-linked G-6-P dehydrogenase, 6-PG dehydrogenase and 3-PGAL dehydrogenase were high.

  • PDF

Hypoglycemic Action of Red Ginseng Components (II). Investigation of the Effect of Fat Soluble Fraction from Red Ginseng on Enzymes Related to Glucose Metabolism in Cultured Rat Hapatocytes (홍삼 성분의 혈당강하작용 연구 (ll) :쥐의 배양 간세포의 당대사 관련 효소 활성에 미치는 홍삼 지용성 분획의 영향 조사)

  • 이현아;심희선
    • Journal of Ginseng Research
    • /
    • v.22 no.1
    • /
    • pp.51-59
    • /
    • 1998
  • In this study, rat hepatocytes known to have active glucose metabolism were obtained to investigate the hypoglycemic action of fat soluble fraction of red ginseng by using the liver perfusion technique and incubated in two different media-one containing insulin and glucagon (control group), and the other containing glucagon only The activities of main regulating enzymes, such as glucokinase, glucose 6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenate, and glucose 6-phosphatase, related to metabolic pathways of glucose in these two kinds of hepatocytes were compared between these two groups and the effects of addition of fat soluble fraction ($10^1$~$10^4$%) from red ginseng to these two groups on these enzymes were also detected. The results were as follows. The specific activity of enzymes such as glucokinase, flucorse 6-phosphate dehydrogenase, and 6-phosphogluconate dehydrogenase related to glucose-consuming pathways of insulin-deficient group was much less than control one. However, their decreased activity was recovered after the addition of fat-soluble fraction at all range of concentrations. The specific activity of these enzymes after the addition of ginseng components to the control group was also increased. On the other hand, the specific activity of glucose 6-phosphatase related to glucose-producing pathway of insulin-deficient group was much higher than control one, but their increased activity was decreased obviously after the addition of fat soluble fraction at all range of concentrations. The same results were observed after the addition of fat-soluble fraction to the control group. These results suggest that the red ginseng saponin components might be effective on diabetic hyperglycemia by regulating the activity of enzymes related to glucose metabolism directly and/or indirectly. The effects of fat-soluble fraction ($10^2$%) and ginsenosides (mixture, $Rb_1$ and $Rg_1$, $10^4$%) on hypoglycemic action were compared. As a result, they showed considerable effect on hyperglycemia, but the best eff ect on the activities of glucokinase and glucose 6-phosphate dehydrogenase was appeared by ginsenoside $Rb_1$ and that of 6-phosphogluconate dehydrogenase and glucose 6-phosphatase was by ginsenoside mixture.

  • PDF

Comparison of Metabolic Pathways of Less Orthologous Prokaryotes than Mycoplasma genitalium (Mycoplasma genitalium 보다 보존적 유전자 수가 작은 원핵생물들의 대사경로 비교)

  • Lee, Dong-Geun
    • Journal of Life Science
    • /
    • v.28 no.3
    • /
    • pp.369-375
    • /
    • 2018
  • Mycoplasma genitalium has 367 conserved genes and the smallest genome among mono-culturable prokaryotes. Conservative metabolic pathways were examined among M. genitalium and 14 prokaryotes, one hyperthermophilic exosymbiotic archaeon Nanoarchaeum equitans and 13 intracellular eubacteria of plants or insects, with fewer conserved genes than M. genitalium. They have 11 to 71 metabolic pathways, however complete metabolic pathways ranged from 1 to 24. Totally, metabolic pathway hole is very high due to the lack of 45.8% of the enzymes required for the whole metabolic pathways and it could be suggested that the shared metabolic pathway with the host's enzyme would work or the essential substances are host dependent. The number of genes necessary for mass transfer through the cell membrane is also very low, and it may be considered that the simple diffusion or the protein of the host will function in the cell membrane of these prokaryotes. Although the tRNA charging pathway was distributed in all 15 prokaryotes, each has 5-20 tRNA charging genes. This study would give clues to the understanding of the metabolic pathways of intracellular parasitic bacteria of plant and endosymbiotic bacteria of insects, and could provide basic data for prevention of crop damage, development of insect pests and human medicines.

Comparative Genomic and Genetic Functional Analysis of Industrial L-Leucine- and L-Valine-Producing Corynebacterium glutamicum Strains

  • Ma, Yuechao;Chen, Qixin;Cui, Yi;Du, Lihong;Shi, Tuo;Xu, Qingyang;Ma, Qian;Xie, Xixian;Chen, Ning
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.11
    • /
    • pp.1916-1927
    • /
    • 2018
  • Corynebacterium glutamicum is an excellent platform for the production of amino acids, and is widely used in the fermentation industry. Most industrial strains are traditionally obtained by repeated processes of random mutation and selection, but the genotype of these strains is often unclear owing to the absence of genomic information. As such, it is difficult to improve the growth and amino acid production of these strains via metabolic engineering. In this study, we generated a complete genome map of an industrial L-valine-producing strain, C. glutamicum XV. In order to establish the relationship between genotypes and physiological characteristics, a comparative genomic analysis was performed to explore the core genome, structural variations, and gene mutations referring to an industrial L-leucine-producing strain, C. glutamicum CP, and the widely used C. glutamicum ATCC 13032. The results indicate that a 36,349 bp repeat sequence in the CP genome contained an additional copy each of lrp and brnFE genes, which benefited the export of L-leucine. However, in XV, the kgd and panB genes were disrupted by nucleotide insertion, which increase the availability of precursors to synthesize L-valine. Moreover, the specific amino acid substitutions in key enzymes increased their activities. Additionally, a novel strategy is proposed to remodel central carbon metabolism and reduce pyruvate consumption without having a negative impact on cell growth by introducing the CP-derived mutant $H^+$/citrate symporter. These results further our understanding regarding the metabolic networks in these strains and help to elucidate the influence of different genotypes on these processes.

HDAC11 Inhibits Myoblast Differentiation through Repression of MyoD-Dependent Transcription

  • Byun, Sang Kyung;An, Tae Hyeon;Son, Min Jeong;Lee, Da Som;Kang, Hyun Sup;Lee, Eun-Woo;Han, Baek Soo;Kim, Won Kon;Bae, Kwang-Hee;Oh, Kyoung-Jin;Lee, Sang Chul
    • Molecules and Cells
    • /
    • v.40 no.9
    • /
    • pp.667-676
    • /
    • 2017
  • Abnormal differentiation of muscle is closely associated with aging (sarcopenia) and diseases such as cancer and type II diabetes. Thus, understanding the mechanisms that regulate muscle differentiation will be useful in the treatment and prevention of these conditions. Protein lysine acetylation and methylation are major post-translational modification mechanisms that regulate key cellular processes. In this study, to elucidate the relationship between myogenic differentiation and protein lysine acetylation/methylation, we performed a PCR array of enzymes related to protein lysine acetylation/methylation during C2C12 myoblast differentiation. Our results indicated that the expression pattern of HDAC11 was substantially increased during myoblast differentiation. Furthermore, ectopic expression of HDAC11 completely inhibited myoblast differentiation, concomitant with reduced expression of key myogenic transcription factors. However, the catalytically inactive mutant of HDAC11 (H142/143A) did not impede myoblast differentiation. In addition, wild-type HDAC11, but not the inactive HDAC11 mutant, suppressed MyoD-induced promoter activities of MEF2C and MYOG (Myogenin), and reduced histone acetylation near the E-boxes, the MyoD binding site, of the MEF2C and MYOG promoters. Collectively, our results indicate that HDAC11 would suppress myoblast differentiation via regulation of MyoD-dependent transcription. These findings suggest that HDAC11 is a novel critical target for controlling myoblast differentiation.

Difference in Lung Functions according to Genetic Polymorphism of Tobacco Substance Metabolizing Enzymes of Korean Smokers (한국인 흡연자들의 담배 물질 대사 효소의 유전자 다형성에 따른 폐기능 차이)

  • Kang, Yun-Jung
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.5
    • /
    • pp.134-142
    • /
    • 2020
  • This study aimed to determine whether there was a difference in lung functions of smokers according to the presence of carcinogenic genetic-metabolizing enzymes by comparing the results of lung functions and the presence of genetic metabolizing enzymes that metabolize tobacco substances. To achieve this, 31 smokers without no illness and no psychiatric history were selected (28 males and 3 females); they were aged 20 to 27 years and were physically and mentally healthy students attending K University. Their lung functions were measured, and gene polymorphisms of cytochrome P-450 1A1 (CYP1A1) related to metabolic activation of tobacco components and gene polymorphism of tumor protein 53 (TP53) related to lung cancer were analyzed. As a result, the mean values of lung function of TT and Arg / Arg without genetic mutations were the highest, and ANOVA analysis of CYP1A1 and lung functions showed that the P-value of FVC was 0.049, which was different between groups. In other words, there is no high mutation in Cytochrome P-450 1A1 (CYP1A1) gene, which is associated with the metabolic activation of tobacco components. In other words, In the absence of the mutant Cytochrome P-450 1A1 (CYP1A1) gene, which is associated with the metabolic activation of tobacco components, the value of FVC was high.

Microbial Biosensors for Environmental and Food industrial Applications (환경오염과 식품공업 측정용 미생물 바이오센서)

  • 김의락
    • KSBB Journal
    • /
    • v.17 no.3
    • /
    • pp.213-227
    • /
    • 2002
  • To date, the majority of biosensor technologies use binding components such as enzymes antibodies, nucleic acids and protein ligands. In contrast, the goal underlying the use of cells and tissues of animals and plants for a sensor system is to obtain systems capable of extracting information based on the biological activity, mechanisms of action and consequences of exposure to a chemical or biological agent of interest. These systems enable the interrogation of more complex biological response and offer the potential to gather higher information content from measuring physiologic and metabolic response. In these articles, same of the recent trends and applications of microbial biosensors in environmental monitoring and for use in food and fermentations have been reviewed. This endeavor presents many technological challenges to fabricate new microbial biosensors for other scientific field.

Effect of Cross-Linking Agents on L-Sorbose Production by Immobilized Gluconobacter suboxydans Cells

  • PARK, YOUNG-MIN;SANG-KI RHEE;EUI-SUNG CHOI;IN SIK CHUNG
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.6
    • /
    • pp.696-699
    • /
    • 1998
  • Biological oxidation of D-sorbitol to L-sorbose using permeated and immobilized cells of Gluconobacter suboxydans was carried out to investigate the optimum reaction condition. The stabilization effect of cross-linking agents such as glutaraldehyde, tannic acid, and polyethylene imine to prevent the leakage of enzymes from beads containing permeated and immobilized cells of G. suboxydans was examined by the production of L-sorbose from the mixture of D-sorbitol and gluconic acid. The protein concentration effused from immobilized beads treated with only glutaraldehyde was $5.2\mug/m\ell$ after 20 h. The beads of G. suboxydans immobilized with alginate and cross-linked with 0.3% glutaraldehyde was the most useful for the oxidation of D-sorbitol to L-sorbose.

  • PDF