• Title/Summary/Keyword: Meta-learner

Search Result 31, Processing Time 0.026 seconds

Design and Implementation of Adaptive Learning Management System Based on SCORM (SCORM 기반의 적응형 학습관리 시스템의 설계 및 구현)

  • Han Kyung-Sup;Seo Jeong-Man;Jung Soon-Key
    • Journal of the Korea Society of Computer and Information
    • /
    • v.9 no.3
    • /
    • pp.115-120
    • /
    • 2004
  • As a part of working on development of the learning management system, a adaptive learning management system which is able to provide individual learner with different learning contents or paths customized to learner's learning behaviors by expanding SCORM was proposed in this dissertation. In terms of instructional technology interrelated with technology of CBI and ITS, new learning environments and learner preferences were analyzed. A related laboratory system was implemented by packaging a process on how to expand the meta data for contents and a process on how to utilize the web-based learning contents dynamically. In order to evaluate the usability of the implemented system, a sample content was provided to some selected learners and their learning achievement resulted from the new learning environment was analysed. A result of the experiment indicated that the adaptive learning management system proposed in this dissertation could provide every learner with the different content tailored to their individual learning preference and behavior. and it worked also to promote the learning performance of every learner.

  • PDF

Observer-Teacher-Learner-Based Optimization: An enhanced meta-heuristic for structural sizing design

  • Shahrouzi, Mohsen;Aghabaglou, Mahdi;Rafiee, Fataneh
    • Structural Engineering and Mechanics
    • /
    • v.62 no.5
    • /
    • pp.537-550
    • /
    • 2017
  • Structural sizing is a rewarding task due to its non-convex constrained nature in the design space. In order to provide both global exploration and proper search refinement, a hybrid method is developed here based on outstanding features of Evolutionary Computing and Teaching-Learning-Based Optimization. The new method introduces an observer phase for memory exploitation in addition to vector-sum movements in the original teacher and learner phases. Proper integer coding is suited and applied for structural size optimization together with a fly-to-boundary technique and an elitism strategy. Performance of the proposed method is further evaluated treating a number of truss examples compared with teaching-learning-based optimization. The results show enhanced capability of the method in efficient and stable convergence toward the optimum and effective capturing of high quality solutions in discrete structural sizing problems.

A stacking ensemble model to improve streamflow forecasts at medium range forecasts through hydrological regionalization over South Korea (한국 유역의 지역화를 통해 유출량 예측을 개선하기 위한 수문학적 후 처리된 스태킹 앙상블 모형)

  • Lee, Dong Gi;Ahn, Kuk-Hyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.182-182
    • /
    • 2021
  • 본 연구에서는 1일부터 최대 7일까지의 시간을 두고 남한 전체의 유출량에 대한 예측 모형을 제시하고자 한다. 이를 위하여 LSM (Land Surface Model) 모형을 사용하여 유출량을 모의하였고 이 과정에서 미 계측치에 대한 유출량을 예측하기 위하여 Xgboost (Extreme Gradient Boost)를 활용하여 매개변수를 지역화하였다. 이러한 지역화 기법을 통하여 남한 전체의 유출량에 대한 그리드화 된 유출값을 얻을 수 있었다. 또한 본 연구에서는 기상 예측자료를 유출량에 대한 예측으로 변환하기 위하여 Stacking 앙상블 기반의 수문학적 후처리 기법을 사용하였다. Stacking 앙상블 기법은 Base-learner와 Meta-learner의 조합으로 이루어 지는데 본 연구에서 새롭게 사용되는 패널티 기반의 분위회귀분석 방법론은 기존의 방법론과의 비교에 있어서 유용한 것으로 파악되었다. 결과적으로 본 연구에서는 총 7일의 앞선 시간의 예측에 있어서 한반도 전체의 유출량에서 비교적 짧은 시간에 대한 예측인 1일과 2일에서의 예측은 실질적으로 사용이 가능한 것으로 파악되었다.

  • PDF

AutoFe-Sel: A Meta-learning based methodology for Recommending Feature Subset Selection Algorithms

  • Irfan Khan;Xianchao Zhang;Ramesh Kumar Ayyasam;Rahman Ali
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.7
    • /
    • pp.1773-1793
    • /
    • 2023
  • Automated machine learning, often referred to as "AutoML," is the process of automating the time-consuming and iterative procedures that are associated with the building of machine learning models. There have been significant contributions in this area across a number of different stages of accomplishing a data-mining task, including model selection, hyper-parameter optimization, and preprocessing method selection. Among them, preprocessing method selection is a relatively new and fast growing research area. The current work is focused on the recommendation of preprocessing methods, i.e., feature subset selection (FSS) algorithms. One limitation in the existing studies regarding FSS algorithm recommendation is the use of a single learner for meta-modeling, which restricts its capabilities in the metamodeling. Moreover, the meta-modeling in the existing studies is typically based on a single group of data characterization measures (DCMs). Nonetheless, there are a number of complementary DCM groups, and their combination will allow them to leverage their diversity, resulting in improved meta-modeling. This study aims to address these limitations by proposing an architecture for preprocess method selection that uses ensemble learning for meta-modeling, namely AutoFE-Sel. To evaluate the proposed method, we performed an extensive experimental evaluation involving 8 FSS algorithms, 3 groups of DCMs, and 125 datasets. Results show that the proposed method achieves better performance compared to three baseline methods. The proposed architecture can also be easily extended to other preprocessing method selections, e.g., noise-filter selection and imbalance handling method selection.

A Study on the U-learning Service Application Based on the Context Awareness (상황인지기반 U-Learning 응용서비스)

  • Lee, Kee-O;Lee, Hyun-Chang;Shin, Hyun-Cheul
    • Convergence Security Journal
    • /
    • v.8 no.4
    • /
    • pp.81-89
    • /
    • 2008
  • This paper introduces u-learning service model based on context awareness. Also, it concentrates on agent-based WPAN technology, OSGi based middleware design, and the application mechanism such as context manager/profile manager provided by agents/server. Especially, we'll introduce the meta structure and its management algorithm, which can be updated with learning experience dynamically. So, we can provide learner with personalized profile and dynamic context for seamless learning service. The OSGi middleware is applied to our meta structure as a conceptual infrastructure.

  • PDF

Education On Demand System Based on e-Learning Standards (e-Learning 표준에 기반한 주문형 교육 시스템)

  • Hong, Gun Ho;Song, Ha Yoon
    • The Journal of Korean Association of Computer Education
    • /
    • v.6 no.3
    • /
    • pp.99-108
    • /
    • 2003
  • This paper indicates limitations of the existing VOD(Video on Demand)-based on-line education systems and presents the design and implementation of Education on Demand (EOD) system as an alternative. EOD system is based on meta information expressed in XML and component technology. Overall system consists of authoring tool. contents server, learning policy system and contents viewer. which are utilized throughout the learning contents life-cycle. EOD system enables automated contents management using meta information exchange methodology that is conformant to the SCORM meta data presentation scheme. In addition, integrated management of interaction and feedback information along with the learning policy system provides customized learning guide for each individual learner. With the development of EOD system, this paper discusses about advanced on-line education system which surpasses existing content-providing-only systems.

  • PDF

Development and application of problem-solving learning method(WCSNA) based online learning system (문제해결 학습법(WCSNA) 기반 온라인 학습시스템 개발 및 응용)

  • Hong, Hee-dong
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.4
    • /
    • pp.39-44
    • /
    • 2022
  • Mathematics franchise education companies are developing various online learning systems to provide on-off integrated education to learners. Most online learning systems deliver one-way lecture content to learners and perform quantitative problem-solving learning for learning results. However, each learner has different academic achievement competencies, and it is impossible to determine exactly where the level of understanding fell when solving a math method. and based on this, establish an online learning system to discover the weak points of learners and propose an effective learner management method. Through the developed learning method and system, it is expected to cultivate balanced problem-solving ability for learners and provide differentiated brand image and counseling service to franchise companies.

A Systematic Literature Review on Feedback Types for Continuous Learning Enhancement of Online Learners

  • Yoseph Park
    • International Journal of Advanced Culture Technology
    • /
    • v.12 no.3
    • /
    • pp.449-465
    • /
    • 2024
  • This study conducted a systematic literature review using online databases to investigate the effective feedback types that enhance the learning experiences of online students. Feedback is a critical component for learner success. With the expansion of online education, the importance of feedback has become more evident due to the reduced interaction between instructors and learners. Instructors must provide high-quality feedback that motivates learners and supports their educational goals. This involves using automated tools appropriate for the environment and effective feedback strategies to deliver personalized feedback. The literature was gathered through an extensive search process, adhering to predetermined inclusion and exclusion criteria, and included a risk assessment of selected studies, drawing from sources such as Google Scholar, Elsevier, and other Scopus-indexed journals. The review adhered to the guidelines set forth by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). Specific keywords related to the study's focus, including "Online learning," "Improving learning," "Learner performance," "Feedback type," and "Feedback," guided the database searches. The protocol for selecting systematic reviews on learning enhancement involved screening articles published from 2013 to 2021 based on their titles and abstracts according to established criteria. Analyzing and studying data on learning patterns in non-face-to-face educational environments can improve learners' needs and educational effectiveness. Selecting the right types of feedback, taking into account the learners' levels and educational objectives, is crucial for providing effective feedback. A variety of feedback types are essential for the continuous improvement of learners' learning.

TMD parameters optimization in different-length suspension bridges using OTLBO algorithm under near and far-field ground motions

  • Alizadeh, Hamed;Lavasani, H.H.
    • Earthquakes and Structures
    • /
    • v.18 no.5
    • /
    • pp.625-635
    • /
    • 2020
  • Suspension bridges have the extended in plan configuration which makes them prone to dynamic events like earthquake. The longer span lead to more flexibility and slender of them. So, control systems seem to be essential in order to protect them against ground motion excitation. Tuned mass damper or in brief TMD is a passive control system that its efficiency is practically proven. Moreover, its parameters i.e. mass ratio, tuning frequency and damping ratio can be optimized in a manner providing the best performance. Meta-heuristic optimization algorithm is a powerful tool to gain this aim. In this study, TMD parameters are optimized in different-length suspension bridges in three distinct cases including 3, 4 and 5 TMDs by observer-teacher-learner based algorithm under a complete set of ground motions formed from both near-field and far-field instances. The Vincent Thomas, Tacoma Narrows and Golden Gate suspension bridges are selected for case studies as short, mean and long span ones, respectively. The results indicate that All cases of used TMDs result in response reduction and case 4TMD can be more suitable for bridges in near and far-field conditions.

A Meta-Analysis on the Effects of Educational Programming Language (교육용프로그래밍언어의 효과에 관한 메타분석)

  • Jin, Young-Hak;Kim, Yung-Sik
    • The Journal of Korean Association of Computer Education
    • /
    • v.14 no.3
    • /
    • pp.25-36
    • /
    • 2011
  • The purpose of this study was to analyze the effects of educational programming language(EPL) using the meta-analysis method. In order to achieve the purpose of this study, t-test and F-test were performed for the effect size differences between the variables. The results of the study were as follows: First, EPL turned out to be highly effective in improving learning effects. The total mean of effect size was as big as 1.01 and the value of $U_3$ was 84.38%. EPL increased the learning effect by 34.38% compared with the control group. Second, the moderator variables such as subject, publication type, and learner's school age there was no statistically significant differences. By designing the experiment nonequivalent control group pretest-posttest design showed statistically significant effect size compared with single group pretest-posttest design. Third, the mean effect sizes of the dependent variables were as follows: Creativity 1.90, problem solving ability 1.25, logical thinking ability 1.18, learning motivation 0.81, and achievement 0.59. EPL showed positive effect than traditional teaching and learning method comprehensively.

  • PDF