This meta-analysis was conducted to examine whether the genotype status of Val158Met polymorphism in catechol-O-methyltransferase (COMT) is associated with endometrial and ovarian cancer risk. Eligible studies were identified by searching several databases for relevant reports published before January 1, 2014. Pooled odds ratios (ORs) were appropriately derived from fixed-effects or random-effects models. In total, 15 studies (1,293 cases and 2,647 controls for ovarian cancer and 2,174 cases and 2,699 controls for endometrial cancer) were included in the present meta-analysis. When all studies were pooled into the meta-analysis, there was no evidence for significant association between COMT Val158Met polymorphism and ovarian cancer risk (Val/Met versus Val/Val: OR=0.91, 95% CI=0.76-1.08; Met/Met versus Val/Val: OR=0.90, 95% CI=0.73-1.10; dominant model: OR=0.90, 95% CI=0.77-1.06; recessive model: OR=0.95, 95% CI=0.80-1.13). Similarly, no associations were found in all comparisons for endometrial cancer (Val/Met versus Val/Val: OR 0.97, 95% CI=0.77-1.21; Met/Met versus Val/Val: OR=1.02, 95% CI=0.73-1.42; dominant model: OR=0.98, 95% CI=0.77-1.25; recessive model: OR=1.02, 95% CI=0.87-1.20). In the subgroup analyses by source of control and ethnicity, no significant associations were found in any subgroup of population. This meta-analysis strongly suggests that COMT Val158Met polymorphism is not associated with increased endometrial and ovarian cancer risk.
Objective: Methylenetetrahydrofolate reductase (MTHFR) gene polymorphisms have been reported to be associated with pancreatic cancer, but the published studies had yielded inconsistent results.We therefore performed the present meta-analysis. Methods: A search of Google scholar, PubMed, Cochrane Library and CNKI databases before April 2012 was conducted to summarize associations of MTHFR polymorphisms with pancreatic cancer risk. Assessment was with odds ratios (ORs) and 95% confidence intervals (CIs). Publication bias were also calculated. Results: Four relative studies on MTHFR gene polymorphisms (C667T and A1298C) were involved in this meta-analysis. Overall, C667T(TT vs. CC : OR = 1.61, 95%CI = 0.78 - 3.34; TT vs. CT : OR = 1.41, 95%CI = 0.88-2.25; dominant model: OR = 0.68, 95%CI = 0.40-1.17; recessive model: OR = 0.82, 95%CI = 0.52-1.30) and A1298C(CC vs. AA:OR=1.01, 95%CI=0.47-2.17; CC vs. AC: OR=0.99,95%CI=0.46-2.14; dominant model: OR=1.01, 95%CI = 0.47-2.20; recessive model: OR = 1.01, 95%CI = 0.80-1.26) did not increase pancreatic cancer risk. Conclusion: This meta-analysis indicated that MTHFR polymorphisms (C667T and A1298C) were not associated with pancreatic cancer risk.
메타분석은 여러 실증연구의 정량적인 결과를 통합과 분석을 통해 전체 결과를 조망할 기회를 제공하는 통계적 통합 방법이다. 스마트폰 관련 연구에서 기술수용모델 선행요인에 관한 연구들을 문헌적 고찰 및 메타분석을 실시하였다. 본 연구는 2008년부터 2013년까지 우리나라 학술지에 게재된 연구 중 기술수용모델의 인과관계를 설정한 총 106편의 연구논문을 대상으로 하였다. 메타분석의 결과 선행 요인과 인지된 유용성의 경로에 가장 큰 효과 크기는 유희성으로 나타났다. 인지된 유용성과 유희성의 경로에 효과 크기는 0.536이었다. 그리고 선행 요인과 인지된 사용 용이성의 경로에 가장 큰 효과 크기는 자기 효능감으로 나타났다. 인지된 사용 용이성과 자기 효능감 경로에 효과 크기는 0.626이었다. 분석결과를 바탕으로 이론적 실무적 시사점을 제시하고 선행연구와 비교분석을 통해 차이점을 논의하였다.
본 논문에서는 해양자동채염기의 구조중량 최소화를 위해 구조설계에 대한 메타모델 기반 근사최적화를 수행하였다. 구조해석은 해양자동채염기의 초기설계에 대한 강도성능을 평가하기 위해 유한요소법을 이용하여 수행하였다. 구조해석에서는 설계하중조건에 대한 강도성능을 평가하였다. 최적설계문제는 강도성능 제한조건을 만족하면서 중량을 최소화할 수 있는 구조두께의 설계변수를 결정하도록 정식화하였다. 근사최적화에는 반응표면법, 크리깅 모델 및 체비쇼프 직교 다항식의 메타모델을 사용하였다. 수치계산 특성을 검토하기 위해 근사최적화 결과는 비근사최적화 결과와 비교하였다. 근사최적화에 사용된 메타모델 중 체비쇼프 직교 다항식이 해양자동채염기의 구조설계에 가장 적합한 최적설계 결과를 나타내었다.
Typical anti-jamming technologies based on array antennas, Space Time Adaptive Process (STAP) & Space Frequency Adaptive Process (SFAP), are very effective algorithms to perform nulling and beamforming. However, it does not perform equally well for all types of jamming signals. If the anti-jamming algorithm is not optimized for each signal type, anti-jamming performance deteriorates and the operation stability of the system become worse by unnecessary computation. Therefore, jamming classification technique is required to obtain optimal anti-jamming performance. Machine learning, which has recently been in the spotlight, can be considered to classify jamming signal. In general, performing supervised learning for classification requires a huge amount of data and new learning for unfamiliar signal. In the case of jamming signal classification, it is difficult to obtain large amount of data because outdoor jamming signal reception environment is difficult to configure and the signal type of attacker is unknown. Therefore, this paper proposes few-shot jamming signal classification technique using meta-learning and transfer-learning to train the model using a small amount of data. A training dataset is constructed by anti-jamming algorithm input data within the GNSS receiver when jamming signals are applied. For meta-learning, Model-Agnostic Meta-Learning (MAML) algorithm with a general Convolution Neural Networks (CNN) model is used, and the same CNN model is used for transfer-learning. They are trained through episodic training using training datasets on developed our Python-based simulator. The results show both algorithms can be trained with less data and immediately respond to new signal types. Also, the performances of two algorithms are compared to determine which algorithm is more suitable for classifying jamming signals.
Objective: Increasing scientific evidence suggests that common variants in the PALB2 gene may confer susceptibility to breast cancer, but many studies have yielded inconclusive results. This meta-analysis aimed to derive a more precise estimation of the relationship between PALB2 genetic variants and breast cancer risk. Methods: An extensive literary search for relevant studies was conducted in PubMed, Embase, Web of Science, Cochrane Library, CISCOM, CINAHL, Google Scholar, CNKI and CBM databases from their inception through September 1st, 2013. A meta-analysis was performed using the STATA 12.0 software and crude odds ratios (ORs) with 95% confidence intervals (CIs) were calculated. Results: Six case-control studies were included with a total of 4,499 breast cancer cases and 6,369 healthy controls. Our meta-analysis reveals that PALB2 genetic variants may increase the risk of breast cancer (allele model: OR>1.36, 95%CI: 1.20~1.52, P < 0.001; dominant model: OR>1.64, 95%CI: 1.42~1.91, P < 0.001; respectively). Subgroup analyses by ethnicity indicated PALB2 genetic variants were associated with an increased risk of breast cancer among both Caucasian and Asian populations (all P < 0.05). No publication bias was detected in this meta-analysis (all P > 0.05). Conclusion: The current meta-analysis indicates that PALB2 genetic variants may increase the risk of breast cancer. Thus, detection of PALB2 genetic variants may be a promising biomarker approach.
This study is the result of meta evaluation for the self evaluation of defense R&D programs in Korea by using meta evaluating indicators. The overall meta evaluation result of defense R&D programs gained 74.3 points out of 100, so it was evaluated as 'Good'. But it demonstrated that further improvement for overall system of defense R&D programs evaluation is required. And especially, it demonstrated that more alternatives are necessary in order to improve the utilizations and the feedbacks of evaluation results. The evaluation context component gained 80.2 points out of 100, so it was evaluated as 'Very Good'. The evaluation input component gained 73.1 points out of 100, so it was evaluated as 'Good'. The evaluation process component gained 74.8 points out of 100, so it was evaluated as 'Good'. And the evaluation outcome component gained 69.0 points out of 100, so it was evaluated as 'Good'. Basic model of meta evaluation was derived from the literature review and brain storming. And this meta evaluation model was determined by adopting the result of experts who performed evaluations for defense R&D programs in recent years. The reliability of components and items was verified by Cronbach's a coefficient. It was over 0.6 in evaluation components and items. And the reliability of evaluation context was 0.877, that of evaluation input was 0.755, that of evaluation process was 0.755, that of evaluation output was 0.755 respectively. From the analysis, it is attempted to identify possible problems and to find out the ways of improvements related to the self evaluation system of defense R&D programs. The ultimate objective of this study is to manage the programs effectively and improve the reliability and the objectiveness of the defense R&D programs.
본 연구는 만성질환 중의 하나인 고지혈증 유병을 예측하는 분류모형을 개발하고자 한다. 이를 위해 SVM과 meta-learning 알고리즘을 이용하여 성과를 비교하였다. 또한 각 알고리즘에서 성과를 향상시키기 위해 변수선정 방법을 통해 유의한 변수만을 선정하여 투입하여 분석하였고 이 결과 역시 각각 성과를 비교하였다. 본 연구목적을 달성하기 위해 한국의료패널 2012년 자료를 이용하였고, 변수 선정을 위해 세 가지 방법을 사용하였다. 먼저 단계적 회귀분석(stepwise regression)을 실시하였다. 둘째, 의사결정나무(decision tree) 알고리즘을 사용하였다. 마지막으로 유전자 알고리즘을 사용하여 변수를 선정하였다. 한편, 이렇게 선정된 변수를 기준으로 SVM, meta-learning 알고리즘 등을 이용하여 고지혈증 환자분류 예측모형을 비교하였고, TP rate, precision 등을 사용하여 분류 성과를 비교분석하였다. 이에 대한 분석결과는 다음과 같다. 첫째, 모든 변수를 투입하여 분류한 결과 SVM의 정확도는 88.4%, 인공신경망의 정확도는 86.7%로 SVM의 정확도가 좀 더 높았다. 둘째, stepwise를 통해 선정된 변수만을 투입하여 분류한 결과 전체 변수를 투입하였을 때보다 각각 정확도가 약간 높았다. 셋째, 의사결정나무에 의해 선정된 변수 3개만을 투입하였을 때 인공신경망의 정확도가 SVM보다 높았다. 유전자 알고리즘을 통해 선정된 변수를 투입하여 분류한 결과 SVM은 88.5%, 인공신경망은 87.9%의 분류 정확도를 보여 주었다. 마지막으로, 본 연구에서 제안하는 meta-learning 알고리즘인 스태킹(stacking)을 적용한 결과로서, SVM과 MLP의 예측결과를 메타 분류기인 SVM의 입력변수로 사용하여 예측한 결과, 고지혈증 분류 정확도가 meta-learning 알고리즘 중에서는 가장 높은 것으로 나타났다.
Shirazinia, Reza;Golabchifar, Ali Akbar;Fazeli, Mohammad Reza
Clinical and Experimental Pediatrics
/
제64권12호
/
pp.642-651
/
2021
Background: Infantile colic (IC) is excessive crying in otherwise healthy children. Despite vast research efforts, its etiology remains unknown. Purpose: Most treatments for IC carry various side effects. The collection of evidence may inform researchers of new strategies for the management and treatment of IC as well as new clues for understanding its pathogenesis. This review and meta-analysis aimed to evaluate the efficacy and possible mechanisms of probiotics for mananaging IC. Methods: Ten papers met the study inclusion and exclusion criteria, and the meta-analysis was conducted using Review Manager (RevMan) software and a random-effects model. Results: This meta-analysis revealed that probiotics are effective for treating infantile colic, while the review showed that this efficacy may be due to their anti-inflammatory effects. Conclusion: Probiotics may be an important treatment option for managing infantile colic due to their anti-inflammatory properties.
Objective: The purpose of this systematic review and meta-analysis was to investigate potential effects of HRT (hormone replacement therapy) on motor functions in postmenopausal women. Method: In this meta-analysis, 19 studies that examined changes in motor functions between postmenopausal women with and without HRT intervention were qualified. We additionally conducted moderator variable analyses including: (1) motor function type, (2) hormone type, and (3) duration of HRT intervention. Results: The random effects model showed no significant overall effects (SMD = 0.199; SE = 0.115; 95% CI = -0.026~0.425; Z = 1.730; p = 0.084; I2 = 93.258%). Additional three moderator variable analyses revealed no significant effect sizes indicating that specific HRT protocols did not improve different motor functions in postmenopausal women. Conclusion: These meta-analytic findings suggest that HRT had no positive effects on motor functions in postmenopausal women.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.