DOI QR코드

DOI QR Code

Efficacy of probiotics for managing infantile colic due to their anti-inflammatory properties: a meta-analysis and systematic review

  • Shirazinia, Reza (Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran) ;
  • Golabchifar, Ali Akbar (Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran) ;
  • Fazeli, Mohammad Reza (Pharmaceutical Quality Assurance Research Center, The institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences)
  • Received : 2020.10.09
  • Accepted : 2021.03.29
  • Published : 2021.12.15

Abstract

Background: Infantile colic (IC) is excessive crying in otherwise healthy children. Despite vast research efforts, its etiology remains unknown. Purpose: Most treatments for IC carry various side effects. The collection of evidence may inform researchers of new strategies for the management and treatment of IC as well as new clues for understanding its pathogenesis. This review and meta-analysis aimed to evaluate the efficacy and possible mechanisms of probiotics for mananaging IC. Methods: Ten papers met the study inclusion and exclusion criteria, and the meta-analysis was conducted using Review Manager (RevMan) software and a random-effects model. Results: This meta-analysis revealed that probiotics are effective for treating infantile colic, while the review showed that this efficacy may be due to their anti-inflammatory effects. Conclusion: Probiotics may be an important treatment option for managing infantile colic due to their anti-inflammatory properties.

Keywords

Acknowledgement

Hereby, it would give us great pleasure to thank all researches whose articles were used in this study!

References

  1. Roberts DM, Ostapchuk M, O brien JG. Infantile colic. Am Fam Physician 2004;70:735-40.
  2. Hide DW, Guyer BM. Prevalence of infant colic. Arch Dis Child 1982;57:559-60. https://doi.org/10.1136/adc.57.7.559
  3. Wessel MA, Cobb JC, Jackson EB, Harris GS, Detwiler AC. Paroxysmal fussing in infancy, sometimes called "colic". Pediatrics 1954;14:421-35. https://doi.org/10.1542/peds.14.5.421
  4. Partty A, Lehtonen L, Kalliomaki M, Salminen S, Isolauri E. Probiotic Lactobacillus rhamnosus GG therapy and microbiological programming in infantile colic: a randomized, controlled trial. Pediatr Res 2015;78:470. https://doi.org/10.1038/pr.2015.127
  5. Brazelton TB. Crying in infancy. Pediatrics 1962;29:579-88. https://doi.org/10.1542/peds.29.4.579
  6. Illingworth RS. Infantile colic revisited. Arch Dis Child 1985;60:981-5. https://doi.org/10.1136/adc.60.10.981
  7. Leung AKC, Lemay JF. Infantile colic: a review. J R Soc Promot Health 2004;124:162-6. https://doi.org/10.1177/146642400412400407
  8. Romanello S, Spiri D, Marcuzzi E, Zanin A, Boizeau P, Riviere S, et al. Association between childhood migraine and history of infantile colic. JAMA 2013;309:1607-12. https://doi.org/10.1001/jama.2013.747
  9. Savino F, Tarasco V. New treatments for infant colic. Curr Opin Pediatr 2010;22:791-7. https://doi.org/10.1097/MOP.0b013e32833fac24
  10. Savino F, Clara Grassino E, Guidi C, Oggero R, Silvestro L, Miniero R. Ghrelin and motilin concentration in colicky infants. Acta Paediatr 2006;95:738-41. https://doi.org/10.1111/j.1651-2227.2006.tb02324.x
  11. Partty A, Kalliomaki M, Salminen S, Isolauri E. Infantile colic is associated with low-grade systemic inflammation. J Pediatr Gastroenterol Nutr 2017;64:691-5. https://doi.org/10.1097/MPG.0000000000001340
  12. Sarasu JM, Narang M, Shah D. Infantile colic:an update. Indian Pediatr 2018;55:979-87. https://doi.org/10.1007/s13312-018-1423-0
  13. Wade S, Kilgour T. Infantile colic. BMJ 2001;323:437-40. https://doi.org/10.1136/bmj.323.7310.437
  14. Danielsson B, Hwang CP. Treatment of infantile colic with surface active substance (simethicone). Acta Paediatr Scand 1985;74:446-50. https://doi.org/10.1111/j.1651-2227.1985.tb11001.x
  15. Metcalf TJ, Irons TG, Sher LD, Young PC. Simethicone in the treatment of infant colic:a randomized, placebo-controlled, multicenter trial. Pediatrics 1994;94:29-34. https://doi.org/10.1542/peds.94.1.29
  16. Goldman MH. Dicycloverine for persistent crying in babies: dicycloverine is contraindicated in infants. BMJ 2004;328:956-7. https://doi.org/10.1136/bmj.328.7445.956-b
  17. Biagioli E, Tarasco V, Lingua C, Moja L, Savino F. Pain-relieving agents for infantile colic. Cochrane Database Syst Rev 2016;9:CD009999.
  18. FAO/WHO Working Group. Guidelines for the evaluation of probiotic in food [Internet]. Ontario (Canada): FAO/WHO Working Group; 2002 [cited 2020 Feb 25]. Available from: https://www.who.int/foodsafety/fs_management/en/probiotic_guidelines.pdf.
  19. Gibson GR, Roberfroid MB. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr 1995;125:1401-2. https://doi.org/10.1093/jn/125.6.1401
  20. Soccol CR, Vandenberghe LPdS, Spier MR, Medeiros ABP, Yamaguishi CT, Lindner JDD, et al. The potential of probiotics: a review. Food Technol Biotech 2010;48:413-34.
  21. Lin YP, Thibodeaux CH, Pena JA, Ferry GD, Versalovic J. Probiotic Lactobacillus reuteri suppress proinflammatory cytokines via c-Jun. Inflamm Bowel Dis 2008;14:1068-83. https://doi.org/10.1002/ibd.20448
  22. Bashashati M, Rezaei N, Shafieyoun A, McKernan DP, Chang L, Ohman L, et al. Cytokine imbalance in irritable bowel syndrome: a systematic review and meta-analysis. Neurogastroenterol Motil 2014;26:1036-48. https://doi.org/10.1111/nmo.12358
  23. Pike BL, Paden KA, Alcala AN, Jaep KM, Gormley RP, Maue AC, et al. Immunological biomarkers in postinfectious irritable bowel syndrome. J Travel Med 2015;22:242-50. https://doi.org/10.1111/jtm.12218
  24. Darkoh C, Comer L, Zewdie G, Harold S, Snyder N, Dupont HL. Chemotactic chemokines are important in the pathogenesis of irritable bowel syndrome. PLoS One 2014;9:e93144. https://doi.org/10.1371/journal.pone.0093144
  25. Rhoads JM, Fatheree NY, Norori J, Liu Y, Lucke JF, Tyson JE, et al. Altered fecal microflora and increased fecal calprotectin in infants with colic. J Pediatr 2009;155:823-8.e821. https://doi.org/10.1016/j.jpeds.2009.05.012
  26. Savino F, Garro M, Montanari P, Galliano I, Bergallo M. Crying time and RORγ/FOXP3 expression in Lactobacillus reuteri DSM17938-treated infants with colic: a randomized trial. J Pediatr 2018;192:171-7.e171. https://doi.org/10.1016/j.jpeds.2017.08.062
  27. Kim CH. FOXP3 and its role in the immune system. Adv Exp Med Biol 2009;665:17-29. https://doi.org/10.1007/978-1-4419-1599-3_2
  28. Kianifar H, Ahanchian H, Grover Z, Jafari S, Noorbakhsh Z, Khakshour A, et al. Synbiotic in the management of infantile colic: a randomised controlled trial. J Paediatr Child Health 2014;50:801-5. https://doi.org/10.1111/jpc.12640
  29. Mi GL, Zhao L, Qiao DD, Kang WQ, Tang MQ, Xu JK. Effectiveness of Lactobacillus reuteri in infantile colic and colicky induced maternal depression: a prospective single blind randomized trial. Antonie Van Leeuwenhoek 2015;107:1547-53. https://doi.org/10.1007/s10482-015-0448-9
  30. Savino F, Galliano I, Savino A, Dapra V, Montanari P, Calvi C, et al. Lactobacillus reuteri DSM 17938 probiotics may increase CC-chemokine receptor 7 expression in infants treated with for colic. Front Pediatr 2019;7:1-7 https://doi.org/10.3389/fped.2019.00001
  31. Gerasimov S, Gantzel J, Dementieva N, Schevchenko O, Tsitsura O, Guta N, et al. Role of Lactobacillus rhamnosus (FloraActive™) 19070-2 and Lactobacillus reuteri (FloraActive™) 12246 in infant colic: a randomized dietary study. Nutrients 2018;10:1975. https://doi.org/10.3390/nu10121975
  32. Sung V, Hiscock H, Tang ML, Mensah FK, Nation ML, Satzke C, et al. Treating infant colic with the probiotic Lactobacillus reuteri: double blind, placebo controlled randomised trial. BMJ 2014;348:g2107. https://doi.org/10.1136/bmj.g2107
  33. Ashraf MW, Ayaz SB, Ashraf MN, Matee S, Shoaib M. Probiotics are effective in alleviating infantile colic; results of a randomized controlled trial held at Benazir Bhutto hospital, Rawalpindi, Pakistan. RMJ 2015;40:277-80.
  34. Giglione E, Prodam F, Bellone S, Monticone S, Beux S, Marolda A, et al. The association of Bifidobacterium breve BR03 and B632 is effective to prevent colics in bottle-fed infants: a pilot, controlled, randomized, and double-blind study. J Clin Gastroenterol 2016;50:S164-7. https://doi.org/10.1097/MCG.0000000000000693
  35. Baldassarre ME, Di Mauro A, Tafuri S, Rizzo V, Gallone MS, Mastromarino P, et al. Effectiveness and safety of a probiotic-mixture for the treatment of infantile colic: a double-blind, randomized, placebo-controlled clinical trial with fecal real-time PCR and NMR-based metabolomics analysis. Nutrients 2018;10:195:1-13 https://doi.org/10.3390/nu10020195
  36. Shen JM, Feng L, Feng C. Role of mtDNA haplogroups in the prevalence of osteoarthritis in different geographic populations: a meta-analysis. PLoS One 2014;9:e108896. https://doi.org/10.1371/journal.pone.0108896
  37. Skonieczna-Zydecka K, Janda K, Kaczmarczyk M, Marlicz W, Loniewski I, Loniewska B. The effect of probiotics on symptoms, gut microbiota and inflammatory markers in infantile colic: a systematic review, meta-analysis and meta-regression of randomized controlled trials. J Clin Med 2020;9:1-21
  38. Xu M, Wang J, Wang N, Sun F, Wang L, Liu XH. The efficacy and safety of the probiotic bacterium Lactobacillus reuteri DSM 17938 for infantile colic: a meta-analysis of randomized controlled trials. PLoS One 2015;10:e0141445. https://doi.org/10.1371/journal.pone.0141445
  39. Sung V, Collett S, de Gooyer T, Hiscock H, Tang M, Wake M. Probiotics to prevent or treat excessive infant crying: systematic review and meta-analysis. JAMA Pediatrics 2013;167:1150-7. https://doi.org/10.1001/jamapediatrics.2013.2572
  40. Gutierrez-Castrellon P, Indrio F, Bolio-Galvis A, Jimenez-Gutierrez C, Jimenez-Escobar I, Lopez-Velazquez G. Efficacy of Lactobacillus reuteri DSM 17938 for infantile colic: systematic review with network meta-analysis. Medicine 2017;96:e9375-5. https://doi.org/10.1097/MD.0000000000009375
  41. Rahimi VB, Askari VR, Shirazinia R, Soheili-Far S, Askari N, Rahmanian-Devin P, et al. Protective effects of hydro-ethanolic extract of Terminalia chebula on primary microglia cells and their polarization (M1/M2 balance). Mult Scler Relat Disord 2018;25:5-13. https://doi.org/10.1016/j.msard.2018.07.015
  42. Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, et al. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 2017;9:7204-18. https://doi.org/10.18632/oncotarget.23208
  43. Fatheree NY, Liu Y, Ferris M, Van Arsdall M, McMurtry V, Zozaya M, et al. Hypoallergenic formula with Lactobacillus rhamnosus GG for babies with colic: a pilot study of recruitment, retention, and fecal biomarkers. World J Gastrointest Pathophysiol 2016;7:160-70. https://doi.org/10.4291/wjgp.v7.i1.160
  44. Rhoads JM, Collins J, Fatheree NY, Hashmi SS, Taylor CM, Luo M, et al. Infant colic represents gut inflammation and dysbiosis. J Pediatr 2018;203:55-61.e53. https://doi.org/10.1016/j.jpeds.2018.07.042
  45. Olafsdottir E, Aksnes L, Fluge G, Berstad A. Faecal calprotectin levels in infants with infantile colic, healthy infants, children with inflammatory bowel disease, children with recurrent abdominal pain and healthy children. Acta Paediatrica 2002;91:45-50. https://doi.org/10.1080/080352502753457932
  46. Sung V, Cabana MD. Probiotics for colic-is the gut responsible for infant crying after all? J Pediatr 2017;191:6-8. https://doi.org/10.1016/j.jpeds.2017.09.010
  47. Roseth A, Fagerhol M, Aadland E, Schjonsby H. Assessment of the neutrophil dominating protein calprotectin in feces: a methodologic study. Scand J Gastroenterol 1992;27:793-8. https://doi.org/10.3109/00365529209011186
  48. Roseth AG, Aadland E, Jahnsen J, Raknerud N. Assessment of disease activity in ulcerative colitis by faecal calprotectin, a novel granulocyte marker protein. Digestion 1997;58:176-80. https://doi.org/10.1159/000201441
  49. Roseth AG, Schmidt PN, Fagerhol MK. Correlation between faecal excretion of indium-111-labelled granulocytes and calprotectin, a granulocyte marker protein, in patients with inflammatory bowel disease. Scand J Gastroenterol 1999;34:50-4. https://doi.org/10.1080/00365529950172835
  50. Berstad A, Arslan G, Folvik G. Relationship between intestinal permeability and calprotectin concentration in gut lavage fluid. Scand J Gastroenterol 2000;35:64-9. https://doi.org/10.1080/003655200750024551
  51. Lothe L, Lindberg T, Jakobsson I. Macromolecular absorption in infants with infantile colic. Acta Paediatrica 1990;79:417-21. https://doi.org/10.1111/j.1651-2227.1990.tb11486.x
  52. Michielan A, D'Inca R. Intestinal permeability in inflammatory bowel disease:pathogenesis, clinical evaluation, and therapy of leaky gut. Mediators Inflamm 2015;2015:1-11 https://doi.org/10.1155/2015/628157
  53. Fukui H. Increased intestinal permeability and decreased barrier function: does it really influence the risk of inflammation? Inflamm Intest Dis 2016;1:135-45. https://doi.org/10.1159/000447252
  54. Hietbrink F, Besselink MGH, Renooij W, de Smet MBM, Draisma A, van der Hoeven H, et al. Systemic inflammation increases intestinal permeability during experimental human endotoxemia. Shock 2009;32:374-8. https://doi.org/10.1097/shk.0b013e3181a2bcd6
  55. Carr MW, Roth SJ, Luther E, Rose SS, Springer TA. Monocyte chemoattractant protein 1 acts as a T-lymphocyte chemoattractant. Proc Natl Acad Sci U S A 1994;91:3652-6. https://doi.org/10.1073/pnas.91.9.3652
  56. Xu LL, Warren MK, Rose WL, Gong W, Wang JM. Human recombinant monocyte chemotactic protein and other C-C chemokines bind and induce directional migration of dendritic cells in vitro. J Leukoc Biol 1996;60:365-71. https://doi.org/10.1002/jlb.60.3.365
  57. Maurer M, von Stebut E. Macrophage inflammatory protein-1. Int J Biochem Cell Biol 2004;36:1882-6. https://doi.org/10.1016/j.biocel.2003.10.019
  58. Wu HJ, Wu E. The role of gut microbiota in immune homeostasis and autoimmunity. Gut Microbes 2012;3:4-14. https://doi.org/10.4161/gmic.19320
  59. Xiao TS. Innate immunity and inflammation. Cell Mol Immunol 2017;14:1-3. https://doi.org/10.1038/cmi.2016.45
  60. Geremia A, Biancheri P, Allan P, Corazza GR, Di Sabatino A. Innate and adaptive immunity in inflammatory bowel disease. Autoimmun Rev 2014;13:3-10. https://doi.org/10.1016/j.autrev.2013.06.004
  61. Jones SE, Versalovic J. Probiotic Lactobacillus reuteribiofilms produce antimicrobial and anti-inflammatory factors. BMC Microbiol 2009;9:35:19. https://doi.org/10.1186/1471-2180-9-19
  62. Fallahi G, Motamed F, Yousefi A, Shafieyoun A, Najafi M, Khodadad A, et al. The effect of probiotics on fecal calprotectin in patients with cystic fibrosis. Turk J Pediatr 2013;55:475-8.
  63. Lai HH, Chiu CH, Kong MS, Chang CJ, Chen CC. Probiotic Lactobacillus casei: effective for managing childhood diarrhea by altering gut microbiota and attenuating fecal inflammatory markers. Nutrients 2019;11:1150. https://doi.org/10.3390/nu11051150
  64. Santas J, Fuentes MC, Tormo R, Guayta-Escolies R, Lazaro E, Cune J. Pediococcus pentosaceus CECT 8330 and Bifidobacterium longum CECT 7894 show a trend towards lowering infantile excessive crying syndrome in a pilot clinical trial. Int J Pharm Bio Sci 2015;6:458-66.
  65. Couper KN, Blount DG, Riley EM. IL-10: the master regulator of immunity to infection. J Immunol 2008;180:5771. https://doi.org/10.4049/jimmunol.180.9.5771
  66. Liu Y, Fatheree NY, Dingle BM, Tran DQ, Rhoads JM. Lactobacillus reuteri DSM 17938 changes the frequency of Foxp3+ regulatory T cells in the intestine and mesenteric lymph node in experimental necrotizing enterocolitis. PLoS One 2013;8:e56547. https://doi.org/10.1371/journal.pone.0056547
  67. Tran DQ, Ramsey H, Shevach EM. Induction of FOXP3 expression in naive human CD4+FOXP3 T cells by T-cell receptor stimulation is transforming growth factor-beta dependent but does not confer a regulatory phenotype. Blood 2007;110:2983-90.
  68. Meyer zu Horste G, Cordes S, Mausberg AK, Zozulya AL, Wessig C, Sparwasser T, et al. FoxP3+ regulatory T cells determine disease severity in rodent models of inflammatory neuropathies. PLoS One 2014;9:e108756. https://doi.org/10.1371/journal.pone.0108756
  69. Noor S, Wilson EH. Role of C-C chemokine receptor type 7 and its ligands during neuroinflammation. J Neuroinflammation 2012;9:77. https://doi.org/10.1186/1742-2094-9-77
  70. Liu Y, Fatheree NY, Mangalat N, Rhoads JM. Human-derived probiotic Lactobacillus reuteri strains differentially reduce intestinal inflammation. Am J Physiol Gastrointest Liver Physiol 2010;299:G1087-96. https://doi.org/10.1152/ajpgi.00124.2010
  71. Rahimi VB, Shirazinia R, Fereydouni N, Zamani P, Darroudi S, Sahebkar AH, et al. Comparison of honey and dextrose solution on post-operative peritoneal adhesion in rat model. Biomed Pharmacother 2017;92:84955.
  72. Mannon P, Reinisch W. Interleukin 13 and its role in gut defence and inflammation. Gut 2012;61:1765-73. https://doi.org/10.1136/gutjnl-2012-303461
  73. Van Kampen C, Gauldie J, Collins S. Proinflammatory properties of IL-4 in the intestinal microenvironment. Am J Physiol Gastrointest Liver Physiol 2005;288:G111-7. https://doi.org/10.1152/ajpgi.00014.2004
  74. Nemeth ZH, Bogdanovski DA, Barratt-Stopper P, Paglinco SR, Antonioli L, Rolandelli RH. Crohn's disease and ulcerative colitis show unique cytokine profiles. Cureus 2017;9:e1177.
  75. Scully P, MacSharry J, O'Mahony D, Lyons A, O'Brien F, Murphy S, et al. Bifidobacterium infantis suppression of Peyer's patch MIP-1α and MIP-1β secretion during Salmonella infection correlates with increased local CD4+CD25+ T cell numbers. Cell Immunol 2013;281:134-40. https://doi.org/10.1016/j.cellimm.2013.03.008
  76. Vemuri R, Gundamaraju R, Shinde T, Perera AP, Basheer W, Southam B, et al. Lactobacillus acidophilus DDS-1 modulates intestinal-specific microbiota, short-chain fatty acid and immunological profiles in aging mice. Nutrients 2019;11:1-23. https://doi.org/10.3390/nu11010001
  77. Liu Y, Fatheree NY, Mangalat N, Rhoads JM. Lactobacillus reuteri strains reduce incidence and severity of experimental necrotizing enterocolitis via modulation of TLR4 and NF-κB signaling in the intestine. Am J Physiol Gastrointest Liver Physiol 2012;302:G608-17. https://doi.org/10.1152/ajpgi.00266.2011
  78. Pena JA, Li SY, Wilson PH, Thibodeau SA, Szary AJ, Versalovic J. Genotypic and phenotypic studies of murine intestinal lactobacilli: species differences in mice with and without colitis. Appl Environ Microbiol 2004;70:55868.
  79. Ma D, Forsythe P, Bienenstock J. Live Lactobacillus rhamnosus [corrected] is essential for the inhibitory effect on tumor necrosis factor alpha-induced interleukin-8 expression. Infect Immun 2004;72:5308-14. https://doi.org/10.1128/IAI.72.9.5308-5314.2004
  80. Madsen KL, Doyle JS, Jewell LD, Tavernini MM, Fedorak RN. Lactobacillus species prevents colitis in interleukin 10 gene-deficient mice. Gastroenterology 1999;116:1107-14. https://doi.org/10.1016/S0016-5085(99)70013-2
  81. Bull MJ, Plummer NT. Part 1: the human gut microbiome in health and disease. Integr Med (Encinitas) 2014;13:17-22.
  82. Dubois NE, Gregory KE. Characterizing the intestinal microbiome in infantile colic: findings based on an integrative review of the literature. Biol Res Nurs 2015;18:307-15. https://doi.org/10.1177/1099800415620840
  83. Liu Y, Alookaran JJ, Rhoads JM. Probiotics in autoimmune and inflammatory disorders. Nutrients 2018;10:1537. https://doi.org/10.3390/nu10101537
  84. Wu X, He B, Liu J, Feng H, Ma Y, Li D, et al. Molecular insight into gut microbiota and rheumatoid arthritis. Int J Mol Sci 2016;17:431. https://doi.org/10.3390/ijms17030431
  85. Lee N, Kim WU. Microbiota in T-cell homeostasis and inflammatory diseases. Exp Mol Med 2017;49:e340. https://doi.org/10.1038/emm.2017.36
  86. Dutta SK, Verma S, Jain V, Surapaneni BK, Vinayek R, Phillips L, et al. Parkinson's disease: the emerging role of gut dysbiosis, antibiotics, probiotics, and fecal microbiota transplantation. J Neurogastroenterol Motil 2019;25:363-76. https://doi.org/10.5056/jnm19044
  87. Gagliardi A, Totino V, Cacciotti F, Iebba V, Neroni B, Bonfiglio G, et al. Rebuilding the gut microbiota ecosystem. Int J Environ Res Public Health 2018;15:1-24. https://doi.org/10.3390/ijerph15010001
  88. Kumar R, Sood U, Gupta V, Singh M, Scaria J, Lal R. Recent advancements in the development of modern probiotics for restoring human gut microbiome dysbiosis. Indian J Microbiol 2020;60:12-25. https://doi.org/10.1007/s12088-019-00808-y
  89. Savino F, De Marco A, Ceratto S, Mostert M. Fecal calprotectin during treatment of severe infantile colic with Lactobacillus reuteri DSM 17938: a randomized, double-blind, placebo-controlled trial. Pediatrics 2015;135 (Supplement 1):S5-6. https://doi.org/10.1542/peds.2014-3330H
  90. Mu Q, Tavella VJ, Luo XM. Role of Lactobacillus reuteri in human health and diseases. Front Microbiol 2018;9:757. https://doi.org/10.3389/fmicb.2018.00757
  91. Mohan R, Koebnick C, Schildt J, Mueller M, Radke M, Blaut M. Effects of Bifidobacterium lactis Bb12 supplementation on body weight, fecal pH, acetate, lactate, calprotectin, and IgA in preterm infants. Pediatr Res 2008;64:418-22. https://doi.org/10.1203/PDR.0b013e318181b7fa
  92. Bailey JR, Vince V, Williams NA, Cogan TA. Streptococcus thermophilus NCIMB 41856 ameliorates signs of colitis in an animal model of inflammatory bowel disease. Benef Microbes 2017;8:605-14. https://doi.org/10.3920/BM2016.0110
  93. Klemenak M, Dolinsek J, Langerholc T, Di Gioia D, Micetic-Turk D. Administration of Bifidobacterium breve Decreases the Production of TNF-α in Children with Celiac Disease. Dig Dis Sci 2015;60:3386-92. https://doi.org/10.1007/s10620-015-3769-7
  94. Kumar M, Hemalatha R, Nagpal R, Singh B, Parasannanavar D, Verma V, et al. Probiotic approaches for targeting inflammatory bowel disease: an update on advances and opportunities in managing the disease. Int J Probiotics Prebiotics 2016;11:99-116.
  95. Madsen KL. Inflammatory bowel disease: lessons from the IL-10 gene-deficient mouse. Clin Invest Med 2001;24:250-7.
  96. Ekhlasi G, Zarrati M, Agah S, Hosseini AF, Hosseini S, Shidfar S, et al. Effects of symbiotic and vitamin E supplementation on blood pressure, nitric oxide and inflammatory factors in non-alcoholic fatty liver disease. EXCLI J 2017;16:278-90.