• Title/Summary/Keyword: Mesoporous zeolite In/AlMCM-41

Search Result 2, Processing Time 0.019 seconds

Indium Modified Mesoporous Zeolite AlMCM-41 as a Heterogeneous Catalyst for the Knoevenagel Condensation Reaction

  • Katkar, Santosh S.;Lande, Machhindra K.;Arbad, Balasaheb R.;Rathod, Sandip B.
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.5
    • /
    • pp.1301-1304
    • /
    • 2010
  • The Indium modified mesoporous zeolite AlMCM-41 were synthesized by hydrothermal method and characterized by powder X-ray diffraction (XRD), fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS) techniques. The Knoevenagel condensation of aldehyde with malononitrile or ethyl cyanoacetate was carried out at reflux condition in ethanol by using heterogeneous In/AlMCM-41 catalyst. This method is fast, efficient, easy work-up and eco-friendly to afford the corresponding Knoevenagel adducts. The catalyst was recovered and reused for several cycles with consistent activity.

Dehydration of D-Xylose into Furfural Using Propylsulfonic Acid Modified Mesoporous Silica (황산 표면개질 메조다공 실리카를 이용한 푸르푸랄 제조에 관한 연구)

  • Kim, Eun-Gyu;Kim, Saet-Byul;Park, Eun-Duck;Kim, Sang-Wook
    • Clean Technology
    • /
    • v.16 no.2
    • /
    • pp.95-102
    • /
    • 2010
  • Sulfonic acid (-SO3H) functionalized mesoporous silica containing HMS, SBA 15(S15), MCM 41(M41) were synthesized by post-synthesis and co-condensation method. Their catalytic performance is tested by dehydration reaction of D-xylose to furfural. As a result, good conversion and selectivity was obtained using water as an environmentally friendly solvent. Additionally, increased amounts of sulfuric acid in catalysts resulted in improved conversion of D-xylose. All of the acid-functionalized mesoporous silica showed higher selectivity than other solid acids such as ${\gamma}-Al_{2}O_{3}$ and zeolite.