DOI QR코드

DOI QR Code

Dehydration of D-Xylose into Furfural Using Propylsulfonic Acid Modified Mesoporous Silica

황산 표면개질 메조다공 실리카를 이용한 푸르푸랄 제조에 관한 연구

  • Kim, Eun-Gyu (Department of Molecular Science and Technology, Ajou University) ;
  • Kim, Saet-Byul (Division of Energy Systems Research, and Division of Chemical Engineering and Materials Engineering, Ajou University) ;
  • Park, Eun-Duck (Division of Energy Systems Research, and Division of Chemical Engineering and Materials Engineering, Ajou University) ;
  • Kim, Sang-Wook (Department of Molecular Science and Technology, Ajou University)
  • 김은규 (아주대학교 분자과학기술학과) ;
  • 김샛별 (아주대학교 에너지시스템학부) ;
  • 박은덕 (아주대학교 에너지시스템학부) ;
  • 김상욱 (아주대학교 분자과학기술학과)
  • Received : 2010.03.30
  • Accepted : 2010.06.22
  • Published : 2010.06.30

Abstract

Sulfonic acid (-SO3H) functionalized mesoporous silica containing HMS, SBA 15(S15), MCM 41(M41) were synthesized by post-synthesis and co-condensation method. Their catalytic performance is tested by dehydration reaction of D-xylose to furfural. As a result, good conversion and selectivity was obtained using water as an environmentally friendly solvent. Additionally, increased amounts of sulfuric acid in catalysts resulted in improved conversion of D-xylose. All of the acid-functionalized mesoporous silica showed higher selectivity than other solid acids such as ${\gamma}-Al_{2}O_{3}$ and zeolite.

MCM 41, HMS, SBA 15와 같은 메조다공 실리카에 post-synthesis와 co-condensation 방법으로 황산이 결합된 촉매를 제조하였다. 이 메조다공 실리카들을 자일로즈 탈수화반응의 촉매로 사용하여 푸르푸랄을 합성하였으며 관련된 반응특성을 연구하였다. 그 결과, 친환경적 용매인 물을 사용한 경우에도 양호한 전환율과 선택도를 얻을 수 있었다. 아울러 실리카 표면에 황산의 양이 증가할수록 자일로즈의 전환율이 증가하는 것을 알 수 있었고, 동일한 반응 조건에서 다른 고체산 촉매인 제올라이트와 감마알루미나를 사용했을 때 보다 양호한 선택도 결과를 얻었다.

Keywords

References

  1. http://www.furan.com/furfural_industrial_chemical_intermediate.html
  2. Zeitsch, K.J., "The Chemistry and Technology of Furfiual and Its Many By-Products, first ed., in: Sugar Series," Elsevier, The Netherlands, 13, 2000.
  3. Ahmad, T., Kenne L., Olsson, K., and Theander, O., "2-Furaldehyde and Formic acid from Pentoses in Slightly Acidic Deuterium Oxide Studied by 1H NMR Spectroscopy," Carbohyd Res., 276(2), 309-320 (1995). https://doi.org/10.1016/0008-6215(95)00176-T
  4. Antal Jr, M.J., Leesomboon , T., Mok, W.S., and Rochards, G.N., Carbohydrate Res., 217(1), 71-85 (1991). https://doi.org/10.1016/0008-6215(91)84118-X
  5. Moreaua, C., Belgacemb, M. N., and Gandinib, A, "Recent Catalytic Advances in the Chemistry of Substituted Furans from Carbohydrates and in the Ensuing Polymers," Top. Catal., 27(1-4), 11 (2004). https://doi.org/10.1023/B:TOCA.0000013537.13540.0e
  6. Dias, A, S., Pillinger, M., and Valente, A. A., "Dehydration of Xylose into Furfural over Micro-Mesoporous Sulfonic Acid Catalysts.," J. Catal. 229(2), 414-423 (2005). https://doi.org/10.1016/j.jcat.2004.11.016
  7. Beck, J. S., Vartuli, J. C., Roth , W. J., Leonowicz, M. E., Kresge, C. T., Schmitt, K. D., Chu, C. T. W., Olson, D. H., Sheppard, E. W., McCullen, S. B., Higgins, J. B., and Schlenker, J. L., "A New Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates," J. Am. Chem. Soc., 114(2), 10834-10843 (1992). https://doi.org/10.1021/ja00053a020
  8. Bossaert, W. D., De Vos, D. E., Van Rhijn, W. M., Bullen, J., Grobet, P. J., and Jacobs, P. A., "Mesoporous Sulfonic Acids as Selective Heterogeneous Catalysts for the Synthesis of Monoglycerides," J. Catal., 182(1), 156-164 (1999). https://doi.org/10.1006/jcat.1998.2353
  9. Saravanamurugan, S., Sujandi, Prasetyanto, E. A., Park, S. E., "Liquid-Phase Reaction of 20-Hydroxyacetophenone and Benzaldehyde over $SO_3H$-SBA-15 Catalysts: Influence of Microwave and Thermal effects," Micropor. Mesopor. Mat., 112(113), 97-107 (2008). https://doi.org/10.1016/j.micromeso.2007.09.013
  10. Schulz-Ekloff, G., Rathousky, J. and Zukal. A, "Controlling of Morphology and Characterization of Pore Structure of Ordered Mesoporous Silicas," Micropor. Mesopor.. Mat., 27 (2-3), 273-285 (1999). https://doi.org/10.1016/S1387-1811(98)00261-3
  11. Zhao, D., Fengm, J., Huo, Q., Melosh, N., Fredrickson, G. H., Chmelka, B. F., and Stucky, G. D., "Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50300Angstrom Pores," Science, 279(#5350), 548(1998). https://doi.org/10.1126/science.279.5350.548
  12. Tanev, P.T., and Pinnavaia, T. J., "A Neutral Templating Route to Mesoporous Molecular Sieves," Science, 267(#5159), 865-867 (1995). https://doi.org/10.1126/science.267.5199.865
  13. Margolese, D., J. A. Melero, Christiansen. S. C., Chmelka B. F., and Stucky, G. D., " Direct Syntheses of Ordered SEA-15 Mesoporous Silica Containing Sulfonic Acid Groups," Chem. Mater., 12(8), 2448-2459 (2000). https://doi.org/10.1021/cm0010304
  14. Mori Y. and Pinnavaia, T. J., "Optimizing Organic Functionality in Mesostructured Silica: Direct Assembly of Mercaptopropyl Groups in Wormhole Framework Structures," Chem. Mater. 13(8), 2173-2178 (2001). https://doi.org/10.1021/cm010048r
  15. Benesi, H. A., "Acidity of Catalyst Surfaces. I. Acid Strength from Colors of Adsorbed Indicators," J. Am. Chem. Soc., 78(21), 5490-5494 (1956). https://doi.org/10.1021/ja01602a008
  16. Schneider. P., "Adsorption Isotherms of Microporous-Mesoporous Solids Revisited," Appl. Catal. A: Gen., 129(2), 157-165 (1995). https://doi.org/10.1016/0926-860X(95)00110-7
  17. O'Neill, R., Najeeb M., Vanoye, L., and Aiouche, F., "Kinetics of Aqueos Phase Dehydration of Xylose into Furfural Catalyzed by ZSM-5 Zeolite," Ind. Eng. Chem. Res., 48(9), 4300-4306, ( 2009). https://doi.org/10.1021/ie801599k