• 제목/요약/키워드: Mesoporous carbon electrode

검색결과 24건 처리시간 0.02초

Synthesis of a new class of carbon nanomaterials by solution plasma processing for use as air cathodes in Li-Air batteries

  • Kang, Jun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제39권8호
    • /
    • pp.833-837
    • /
    • 2015
  • Li-air batteries have a promising future for because of their high energy density, which could theoretically be equal to that of gasoline. However, substantial Li-air cell performance limitations exist, which are related to the air cathode. The cell discharge products are deposited on the surfaces of the porous carbon materials in the air electrode, which blocks oxygen from diffusing to the reaction sites. Hence, the real capacity of a Li-air battery is determined by the carbon air electrode, especially by the pore volume available for the deposition of the discharged products. In this study, a simple and fast method is reported for the large-scale synthesis of carbon nanoballs (CNBs) consisting of a highly mesoporous structure for Li-air battery cathodes. The CNBs were synthesized by the solution plasma process from benzene solution, without the need for a graphite electrode for carbon growth. The CNBs so formed were then annealed to improve their electrical conductivity. Structural characterization revealed that the CNBs exhibited both an pore structure and high conductivity.

마그네슘열환원법을 이용한 실리콘-탄소 복합재 제조 및 리튬이차전지 음극재로의 이용 (Preparation of Silicon-Carbon Composite via Magnesiothermic Reduction Method and Its Application to the Anode Material for Lithium Ion Battery)

  • 김으뜸;권순형;김명수;정지철
    • 한국재료학회지
    • /
    • 제24권5호
    • /
    • pp.243-248
    • /
    • 2014
  • Silicon-carbon composite was prepared by the magnesiothermic reduction of mesoporous silica and subsequent impregnation with a carbon precursor. This was applied for use as an anode material for high-performance lithium-ion batteries. Well-ordered mesoporous silica(SBA-15) was employed as a starting material for the mesoporous silicon, and sucrose was used as a carbon source. It was found that complete removal of by-products ($Mg_2Si$ and $Mg_2SiO_4$) formed by side reactions of silica and magnesium during the magnesiothermic reduction, was a crucial factor for successful formation of mesoporous silicon. Successful formation of the silicon-carbon composite was well confirmed by appropriate characterization tools (e.g., $N_2$ adsorption-desorption, small-angle X-ray scattering, X-ray diffraction, and thermogravimetric analyses). A lithium-ion battery was fabricated using the prepared silicon-carbon composite as the anode, and lithium foil as the counter-electrode. Electrochemical analysis revealed that the silicon-carbon composite showed better cycling stability than graphite, when used as the anode in the lithium-ion battery. This improvement could be due to the fact that carbon efficiently suppressed the change in volume of the silicon material caused by the charge-discharge cycle. This indicates that silicon-carbon composite, prepared via the magnesiothermic reduction and impregnation methods, could be an efficient anode material for lithium ion batteries.

EDLC 전극용 메조기공 활성탄소 섬유의 전기화학적 특성 (The Electrochemical Characteristics of Mesopore Active Carbon Fiber for EDLC Electrode)

  • 강채연;신윤성;이종대
    • Korean Chemical Engineering Research
    • /
    • 제49권1호
    • /
    • pp.10-14
    • /
    • 2011
  • 철 이온 교환방법에 의해 메조기공을 갖는 활성탄소 섬유(ACF)를 제조하고, 이를 사용하여 전기 이중층 커패시터(EDLC)의 전극소재 성능을 조사하였다. 질산처리에 의해 제조된 메조기공 ACF는 비표면적이 1,249, 664 $m^2/g$이고, 메조 기공 분율이 70.6-81.3%이고, 평균 기공크기는 약 2.78~4.14 nm이다. 질산처리시간이 짧을수록 비표면적이 크고 메조 기공이 적게 발달됨을 알 수 있었다. 전기이중층 커패시터의 성능을 조사하기 위해서, 메조기공 ACF, 도전제, 바인더를 사용하여 단위 셀을 제조하였으며, 유기 전해질을 사용하였다. 2시간 질산으로 처리된 ACF의 비 축전양은 0.47 $F/cm^2$이고, 20회 충.방전 테스트에서 안정된 실험결과를 얻을 수 있었다. EDLC의 전기화학적 성능은 ACF 전극의 비표면적에 크게 영향을 받으며 메조기공은 전하의 확산저항을 감소시키는 것을 알 수 있었다.

슈퍼 커패시터용 전극을 위한 Polyvinylidene chloride(PVDC)-resin과 Mg(OH)2 템플릿으로부터 메조기공 탄소의 제조 (Fabrication of Mesoporous Carbon from Polyvinylidene Chloride(PVDC)-resin Precursor with Mg(OH)2 Template for Supercapacitor Electrode)

  • 황버들;전상은
    • 한국표면공학회지
    • /
    • 제52권6호
    • /
    • pp.326-333
    • /
    • 2019
  • The microporous carbon derived from PVDC-resin by a simple heat-treatment under an inert atmosphere exhibits a reasonable specific capacitance for a supercapacitor's electrode. However, the capacitance was rapidly decreased at high charge/discharge rate. The micropores present in an electrode surface hinder the entrance of an electrolyte ion onto the entire surface. To induce the meso-sized pores during the carbonization of PVDC-resin, Mg(OH)2 was utilized as a hard template. The porous carbon made from the mixture of PVD-Cresin and Mg(OH)2 include mesopores as well as micropores. The induced mesopores does not homogeneously distributed on the entire surface of the synthesized carbon. The PVDC-resin and Mg(OH)2 are dissolved in the dimethylformamide for the hard template to evolve the pores on the synthesized carbon uniformly. The carbon made from PVDC-resin with solvent and a hard template contains mostly mesopores resulting in the high power performance. The reduced amount of solvent in the precursor derives the carbon with high specific surface area and high power density.

Carbon nanoballs: formation mechanism and electrochemical performance as an electrode material for the air cathode of a Li-air battery

  • Kang, Jun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제39권8호
    • /
    • pp.838-842
    • /
    • 2015
  • The Li-air battery is a promising candidate for the most energy-dense electrochemical power source because it has 5 to 10 times greater energy storage capacity than that of Li-ion batteries. However, the Li-air cell performance falls short of the theoretical estimate, primarily because the discharge terminates well before the pore volume of the air electrode is completely filled with lithium oxides. Therefore, the structure of carbon used in the air electrode is a critical factor that affects the performance of Li-air batteries. In a previous study, we reported a new class of carbon nanomaterial, named carbon nanoballs (CNBs), consisting of highly mesoporous spheres. Structural characterization revealed that the synthesized CNBs have excellent a meso-macro hierarchical pore structure, with an average diameter greater than 10 nm and a total pore volume more than $1.00cm^3g^{-1}$. In this study, CNBs are applied in an actual Li-air battery to evaluate the electrochemical performance. The formation mechanism and electrochemical performance of the CNBs are discussed in detail.

Excavated carbon with embedded Si nanoparticles for ultrafast lithium storage

  • An, Geon-Hyoung;Kim, Hyeonjin;Ahn, Hyo-Jin
    • Journal of Industrial and Engineering Chemistry
    • /
    • 제68권
    • /
    • pp.146-152
    • /
    • 2018
  • Due to their excellent mechanical durability and high electrical conductivity, carbon and silicon composites are potentially suitable anode materials for Li-ion batteries with high capacity and long lifespan. Nevertheless, the limitations of the composites include their poor ionic diffusion at high current densities during cycling, which leads to low ultrafast performance. In the present study, seeking to improve the ionic diffusion using hydrothermal method, electrospinning, and carbonization, we demonstrate the unique design of excavated carbon and silicon composites (EC/Si). The outstanding energy storage performance of EC/Si electrode provides a discharge specific capacity, impressive rate performance, and ultrafast cycling stability.

Improved Performance of CdS/CdTe Quantum Dot-Sensitized Solar Cells Incorporating Single-Walled Carbon Nanotubes

  • Shin, Hokyeong;Park, Taehee;Lee, Jongtaek;Lee, Junyoung;Yang, Jonghee;Han, Jin Wook;Yi, Whikun
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권10호
    • /
    • pp.2895-2900
    • /
    • 2014
  • We fabricated quantum dot-sensitized solar cells (QDSSCs) using cadmium sulfide (CdS) and cadmium telluride (CdTe) quantum dots (QDs) as sensitizers. A spin coated $TiO_2$ nanoparticle (NP) film on tin-doped indium oxide glass and sputtered Au on fluorine-doped tin oxide glass were used as photo-anode and counter electrode, respectively. CdS QDs were deposited onto the mesoporous $TiO_2$ layer by a successive ionic layer adsorption and reaction method. Pre-synthesized CdTe QDs were deposited onto a layer of CdS QDs using a direct adsorption technique. CdS/CdTe QDSSCs had high light harvesting ability compared with CdS or CdTe QDSSCs. QDSSCs incorporating single-walled carbon nanotubes (SWNTs), sprayed onto the substrate before deposition of the next layer or mixed with $TiO_2$ NPs, mostly exhibited enhanced photo cell efficiency compared with the pristine cell. In particular, a maximum rate increase of 24% was obtained with the solar cell containing a $TiO_2$ layer mixed with SWNTs.

Optimal Porous Structure of MnO2/C Composites for Supercapacitors

  • Iwamura, Shinichiroh;Umezu, Ryotaro;Onishi, Kenta;Mukai, Shin R.
    • 한국재료학회지
    • /
    • 제31권3호
    • /
    • pp.115-121
    • /
    • 2021
  • MnO2 can be potentially utilized as an electrode material for redox capacitors. The deposition of MnO2 with poor electrical conductivity onto porous carbons supplies them with additional conductive paths; as a result, the capacitance of the electrical double layer formed on the porous carbon surface can be utilized together with the redox capacitance of MnO2. However, the obtained composites are not generally suitable for industrial production because they require the use of expensive porous carbons and/or inefficient fabrication methods. Thus, to develop an effective preparation procedure of the composite, a suitable structure of porous carbons must be determined. In this study, MnO2/C composites have been prepared from activated carbon gels with various pore sizes, and their electrical properties are investigated via cyclic voltammetry. In particular, mesoporous carbons with a pore size of around 20 nm form a composite with a relatively low capacitance (98 F/g-composite) and poor rate performance despite the moderate redox capacitance obtained for MnO2 (313 F/g-MnO2). On the other hand, using macro-porous carbons with a pore size of around 60 nm increases the MnO2 redox capacitance (399 F/g-MnO2) as well as the capacitance and rate performance of the entire material (203 F/g-composite). The obtained results can be used in the industrial manufacturing of MnO2/C composites for supercapacitor electrodes from the commercially available porous carbons.

메조기공 Silicon/Carbon/CNF 음극소재 제조 및 전기화학적 특성 (Synthesis and Electrochemical Characteristics of Mesoporous Silicon/Carbon/CNF Composite Anode)

  • 박지용;정민지;이종대
    • 공업화학
    • /
    • 제26권5호
    • /
    • pp.543-548
    • /
    • 2015
  • 리튬이온 전지용 음극소재의 용량 및 사이클 성능을 향상시키기 위해서 Si/C/CNF 합성물의 특성이 조사되었다. 제조과정으로는 SBA-15를 합성하고 볼밀링을 이용한 마그네슘환원을 통해 Si/MgO를 얻은 다음, Phenolic resin과 CNF를 이용해 탄화과정을 거쳐 최종적으로 산처리하여 Si/C/CNF 활물질을 합성하였다. 합성된 Si/C/CNF는 BET, XRD, FE-SEM 그리고 TGA를 이용하여 분석하였다. $50^{\circ}C{\sim}70^{\circ}C$까지 온도에 따라 SBA-15를 합성한 결과 $60^{\circ}C$에서 가장 큰 비표면적을 갖는 결과를 얻었다. 또한 LiPF6 (EC : DMC : EMC = 1 : 1 : 1 vol%) 전해질을 사용하여, 충방전, 사이클, CV와 임피던스 등과 같은 전기화학적 테스트를 수행하여 Si/C/CNF 전극의 이차전지 음극활물질로서 성능을 조사하였다. Si/C/CNF (Si : CNF = 97 : 3 중량비)를 이용한 전지의 용량은 1,947 mAh/g으로 다른 합성물보다 우수한 결과를 보였다. CNF 첨가량이 3 wt%에서 11 wt%로 증가함에 따라 용량 보존율이 84~77%로 안정성이 감소되었다. Si/C/CNF 합성소재 전극이 이차전지의 사이클 성능과 전기전도도를 개선할 수 있다는 것을 알 수 있었다.