• Title/Summary/Keyword: Mesophyll

Search Result 165, Processing Time 0.02 seconds

Effect of "Animal Amino Acid's Bestamin" on the Physicochemical Properties of Soil, the Growth and Fruit Quality of Hot Pepper (Capsicum annuum L.) (동물성 아미노산 시용이 토양이화학성과 노지고추 생육 및 품질에 미치는 영향)

  • Chae, Yun-Seok;Hong, Jeum-Kyu;Lee, Sang-Woo
    • Korean Journal of Organic Agriculture
    • /
    • v.19 no.4
    • /
    • pp.501-511
    • /
    • 2011
  • This study was carried out to evaluate the effect of applying levels of Bestamin, animal amino acid, on growth and quality of hot pepper and physicochemical properties of soil. Treatment was given with 200, 400, 800, 1600kg per 10a to control of Bestamin, difference of physicochemical properties was lower than Bestamin, and $P_2O_5$ seems to be reduced, also $K^+$, $Ca^{++}$ were obviously low compared to the control. The content of $NO_{3-}N$ was low compared to control at the Bestamin treated plot. Plant height was longest at 800 treatment and main stem length, main stem weigh and the number of leaves were significantly different with 400 and 800 treatment. No difference was found among the fruit weight, length, diameter in first harvest, but there was significantly different at control of 2nd, 3rd harvest and more increased than 400 and 800 treatment. Fruit weight per plant was the heaviest at 400 and 800 treatment, and the number of fruit was no difference at red pepper but increased with 400 and 800 at green pepper, and yield per 10a was significantly increased to 4503.6kg and 4582.5kg, respectively. Nitrogen in mesophyll accumulation content was obviously reduced at Bestamin treatment compared to control, and amino acid was reduced with control.

Studies on the Induction of Cytoplasts from the Protoplasts of CMS(Cytoplasmic Male Sterility) Line of Nicotiana and the Fusion of the Cytoplast and the another Protoplasts (담배 CMS line의 원형질체로부터 cytoplast의 유도 및 이와 타품종 원형질체와의 융합에 관한 연구)

  • 소상섭;여읍동
    • KSBB Journal
    • /
    • v.8 no.2
    • /
    • pp.97-103
    • /
    • 1993
  • This study was investigated as a step for the purpose of successful introduction of cytoplasmic inherited characters between the different plants. Cytoplasts were separated from the protoplasts of CMS(cytoplasmic male sterility) line such as MS Burley 21 which carried from Nicotiana megalosiphon. The cytoplasts were fused to protoplasts derived from Nicotiana tabacum Br 64 with PEG(polyethylene g1yco1). The cytoplasts were separated by density gradient centrifugation. Efficient separation of cytoplasts depended on the difference of specific density of gradient solution. However, the iso-osmolality of gradient solution was not important to separate the cytoplasts. The cells for a cybrid were fused with 50% concentration of PEG.

  • PDF

Phytotoxic Effect of 5-Aminolevulinic Acid, a Biodegradable Photodynamic Biomaterial, on Rice and Barnyardgrass

  • Chon, Sang-Uk
    • Korean Journal of Environmental Agriculture
    • /
    • v.25 no.3
    • /
    • pp.268-275
    • /
    • 2006
  • ALA (5-aminolevulinic acid) has been proposed as a tetrapyrrole-dependent photodynamic herbicide by the action of the protoporphyrinogen IX oxidase (Protox IX). A study was conducted to determine photodynamic herbicidal effect of ALA on seedling growth of rice (Oryza sativa L.) and barnyard grass (Echinochloa crus-galli Beauv. var. oryzicola Ohwi) under dry and wet conditions. ALA effect on early plant growth of rice and barnyardgrass was greatly concentration dependant, suggesting that it promotes plant growth at very low concentration and inhibits at high concentration. No significant difference in herbicidal activity of biologically and synthetically produced ALAs on plant lengths of test plants was observed ALA exhibited significant photodynamic activity regardless of PSDIP and its duration. Significant shoot growth inhibition by ALA soaking treatment exhibited apparently, indicating that ALA absorbed through root system was translocated into shoot part of plants. ALA reduced plant heights of rice and barnyardgrass seedlings by 6% and 27%, respectively, showing more tolerant to ALA in rice under wet condition. Leaf thickness was reduced markedly by ALA with increasing of ALA concentration, due to mainly membrane destruction and severe loss of turgidity in mesophyll cells, although the epidermal was little affected. It was observed that photodynamic herbicidal activity of ALA applied by pre-and post-emergence application exhibited differently on plant species, and that the activity of ALA against susceptible plants was highly correlated with growing condition.

Ultrastructures of Colletotrichum orbiculare in Cucumber Leaves Expressing Systemic Acquired Resistance Mediated by Chlorella fusca

  • Kim, Su Jeung;Ko, Eun Ju;Hong, Jeum Kyu;Jeun, Yong Chull
    • The Plant Pathology Journal
    • /
    • v.34 no.2
    • /
    • pp.113-120
    • /
    • 2018
  • Chlorella, one single-cell green algae organism that lives autotrophically by photosynthesis, can directly suppress some plant diseases. The objective of this study was to determine whether pre-spraying with Chlorella fusca suspension could induce systemic acquired resistance (SAR) in cucumber plants against anthracnose caused by Colletotrichum orbiculare. In order to illustrate SAR induced by algae, infection structures in host cells were observed under a transmission electron microscope (TEM). Cytological changes as defense responses of host mesophyll cells such as accumulation of vesicles, formation of sheath around penetration hyphae, and thickness of cell wells adjoining with intracellular hyphae were demonstrated in cucumber leaves. Similar defense responses were also found in the plant pre-treated with DL-3-aminobutyric acid, another SAR priming agent. Images showed that defense response of host cells was scarcely observed in untreated leaf tissues. These cytological observations suggest that C. fusca could induce SAR against anthracnose in cucumber plants by activating defense responses of host cells.

The Possible Participation of the Mesophyll on Stomatal Opening

  • Lee, Joon-Sang
    • Korean Journal of Environmental Biology
    • /
    • v.19 no.1
    • /
    • pp.1-6
    • /
    • 2001
  • Many researchers have been studied with guard cell protoplasts and detached epidermis as they think that properly stabilized protoplasts and detached epidermis retain many of the properties of intact guard cells. However, some studies have shown that stomata in detached epidermis behave differently, both quantitatively and qualitatively, from those in the intact leaf. Stomata in the intact leaf are very sensitive to environmental factors such as light, $CO_2$ and osmotic stress, but stomata in detached epidermis are less sensitive to these factors than those in the intact leaf. The clearest evidence to suggest the different response between detached epidermis and intact leaf obtained from the experiments with heavy metal, cadmium. 3-weeks old Commelina. communis was transferred to and grown in Hoagland solution in the presence or absence of 5 mM $Cd^{2+}$ for 4 days. The application of $Cd^{2+}$ showed about 70% inhibition of stomatal conductance when measured at various light intensity (100-1,000 $\mu$mole $m^{-2}s^{-1}). However, stomata in detached epidermis floated on an incubation medium containing 100 $\mu$M $Cd^{2+}$ opened to a degree of about 8.38 fm, but the stomata treated with no cadmium opened to 3.74 ${\mu}{\textrm}{m}$. These results were unexpected as the intact leaf grown in a Hoagland solution containing cadmium showed very negative physiological responses. These results showed that stomata in detached epidermis and in the intact leaf could respond reversely. Therefore, it is possible that we now misunderstand how stomata open in real natural condition.

  • PDF

Cellular Features of the Fronds and Turions in Spirodela polyrhiza

  • Kim, InSun
    • Applied Microscopy
    • /
    • v.43 no.4
    • /
    • pp.140-145
    • /
    • 2013
  • Structural aspects of highly reduced vegetative organs in the aquatic Spirodela polyrhiza were examined using scanning and transmission electron microscopy. The study focused mainly on young and mature fronds with turions and their cellular features were compared. Mature fronds were composed of thin-walled chlorenchyma with highly vacuolated cells; most of which were frequently occupied by either tanniferous deposits or various crystals. Fronds of photoautotrophic offspring were produced from the meristematic region of the reproductive pockets within mother fronds, where they remained until separation. Moderate degrees of wall ingrowth and plasmalemma proliferation were detected briefly in the epidermis of daughter fronds during early development. Vascular tissues were generally much reduced, but air chambers were well-established in fronds. Chloroplasts having grana with several thylakoids were distributed throughout the plant, but starch grains were encountered frequently in the mesophyll chloroplasts of younger fronds and initial stage of the turion. Their cytoplasm was dense with small vacuoles in most cases. Further, big starch grains, up to several microns, occupying most of the plastid volume were formed in the turion prior to sink for overwintering. Plasmodesmata were numerous in the examined tissues, except mature turions, suggesting a symplastic pathway of the metabolites within body.

Ultrastructure of the Epiphytic Sooty Mold Capnodium on Walnut Leaves

  • Kim, Ki Woo
    • 한국균학회소식:학술대회논문집
    • /
    • 2015.11a
    • /
    • pp.14-14
    • /
    • 2015
  • Cellular aspects of sooty mold on walnut leaves were investigated by using light and electron microscopy. A black coating developed on the adaxial leaf surface of a walnut tree. No infestations were found on the abaxial leaf surface with peltate glandular trichomes. Light microscopy showed that fungal complexes from the leaf surface were composed of brown conidia and hyphae. Conidia, with longitudinal and transverse septa, were variable in length ranging from 10 to $30{\mu}m$, and commonly found in clusters, forming microsclerotia. Neither epidermal penetration nor hyphal entrance to host tissues was observed. Based on their morphological characteristics, the fungal complexes were assumed to be Capnodium species. An electron-dense melanized layer was present on the cell wall of multi-celled conidia. Concentric bodies in the fungal cytoplasm had an electron-translucent core surrounded by an electron-dense margin with a fibrillar sheath. Chloroplasts without starch granules in the palisade mesophyll cells of sooty leaves had electron-dense stromata and swollen plastoglobuli. These results suggest that the epiphytic growth of fungal complexes can be attributed to the melanized layer and concentric bodies against a water-deficient environment on the leaf surface. Ultrastructural characteristics of the sooty leaves indicate typical features of dark-adapted and non-photosynthetic shade leaves.

  • PDF

Changes in Curve-Angle of Blade during Salting of Chinese Cabbage (배추의 소금절임중 엽신의 휘임도 변화)

  • Kim, Mi-Gyeong;Kim, Il-Du;Kim, Sun-Dong
    • Food Science and Preservation
    • /
    • v.4 no.2
    • /
    • pp.163-171
    • /
    • 1997
  • This study was undertaken to investigate changes m curve angle of Chinese cabbage blade during salting at various concentration(10, 15, 20, 25%) of salt to evaluated salting degree by curve angle during salting at 20$^{\circ}C$. Salt concentration of brine, the amount of water elution, salt penetration of the tissue(salt concentration of Chinese cabbage), weight loss and texture were investigated. Correlation relation between the above factors and curve angle were determined. The curve angles by method of holding the edge of the Chinese cabbage blade was measured. The curve angles of the mesophyll were proportional to salting time and salt concentration, but slope of line equation showed higher than that of mid-rib. The ideal method of salting evaluation by curve angle was MCA-MRC (the measuring curve angle of mid-rib C) at each concentration of salt. The results of curve angle when reached 3% salt of Chinese cabbage tissue calculated by MCA-MRC at 10, 15, 20 and 25% salting were 57$^{\circ}$, 43$^{\circ}$, 36$^{\circ}$, and 33$^{\circ}$, respectively. And salting times calculated by the same conditions were 19, 12.5, 9.1 and 4.4hours, respectively.

  • PDF

Three Possible Mechanisms for Stomatal Opening in Response to Light

  • Lee, Joon-Sang
    • The Korean Journal of Ecology
    • /
    • v.28 no.2
    • /
    • pp.105-112
    • /
    • 2005
  • Environmental factors such as light and low $CO_2$ concentrations trigger events which may result in stomatal opening. Stomatal aperature is largely controlled by the solute contents of guard cells, but not exclusively, by through changes in their content of potassium salts, with $K^+$ balanced either by $Cl^-$ or malate, depending on the species and conditions. However, how these signals are sensed and how they are transduced into driving the ion fluxes that control stomatal movements is not still fully understood. The basic role of stomata is regulating transpiration and photosynthesis. Photosynthesis plays a central role in the physiology of plants and an understanding of its response to light is, therefore, critical to any discussion of how plants sense and respond to light. It had been proposed that the evidences pointed three possible mechanisms for the light response. Firstly, there is a direct response of stomata to light. Secondly. there is an indirect response of stomata to light through the effect of $CO_2$. Lastly, there are some evidences for a third effect of light on stomata. However, attempts to investigate how these three possible mechanisms explained in detail in response to light have not been made. Therefore, this study is examined the differences among these three possible mechanisms.

The Phenotype of the Soybean Disease-Lesion Mimic (dlm) Mutant is Light-Dependent and Associated with Chloroplast Function

  • Kim, Byo-Kyong;Kim, Young-Jin;Paek, Kyoung-Bee;Chung, Jong-Il;Kim, Jeong-Kook
    • The Plant Pathology Journal
    • /
    • v.21 no.4
    • /
    • pp.395-401
    • /
    • 2005
  • The dlm (disease lesion mimic) mutant of soybean (Glycine max L. Merr) shows the similar lesion of a soybean disease caused by a fungus, Corynespora cassilcola. The lesion was examined at cellular and molecular level. Trypan blue staining result indicated that cell death was detectable in the entire region of leaves excluding veins when the lesions had already been developed. We found that the mesophyll cells of palisade layer in the dim mutant appeared to be wider apart from each other. The chloroplasts of the dim mutant cells contained bigger starch granules than those in normal plants. We also found that the lesion development of dlm plant was light-dependent and the starch degradation during the dark period of diurnal cycle was impaired in the mutant. Three soybean pathogenesis-related genes, PR-1a, PR-4, and PR-10, were examined for their expression patterns during the development of disease lesion mimic. The expression of all three genes was up-regulated to some extent upon the appearance of the disease lesion mimic. Although the exact function of DLM protein remains elusive, our data would provide some insight into mechanism underling the cell death associated with the dim mutation.