• Title/Summary/Keyword: Meshing method

Search Result 125, Processing Time 0.024 seconds

Study on the Optimal Design for Design Parameter of Planetary Gear Train Using Simulated Annealing (시뮬레이티드 어닐링을 이용한 유성치차열의 설계요소 최적화에 관한 연구)

  • Lee Geun Ho;Choi Young Hyuk;Chong Tae Hyong
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.1
    • /
    • pp.58-65
    • /
    • 2005
  • A planetary gear trains has characteristics in compactness, power transformation ability and constant meshing. Usability is increased in applications of auto transmission and industrial gearbox. Study on optimum design of planetary gear train has been progressed on miniaturization of weight, miniaturization of planetary gear train and improvement of high strength. There are demands of study f3r the planetary gear train required long life estimation. In this work being considered life, strength, interference, contact ratio and aspect ratio, the optimum design algorithm is proposed to reduce the volume of planetary gear train with transferring the same amount of power. In the design of algerian for planetary gear train, the determination of teeth number is separated to achieve simplicity and the simulated annealing method as a global optimal technique is used far optimal design method.

Automatic Mesh Generation on Poorly Parameterized NURBS Surfaces (불균일한 매개변수로 정의된 NURBS 곡면에서의 요소망 자동 생성)

  • 채수원;박정민
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.6
    • /
    • pp.189-196
    • /
    • 2003
  • The NURBS surfaces are widely employed for exchanging geometric models between different CAD/CAE systems. However if the input NURBS surfaces are poorly parameterized, most surface meshing algorithms may fail or the constructed meshes can be ill-conditioned. In this paper presents a new method is presented that can generate well conditioned meshes even on poorly parameterized NURBS surfaces by regenerating NURBS surfaces. To begin with, adequate points are sampled on original poorly parameterized surfaces and new surfaces are created by interpolating these points. And then, mesh generation is performed on new surfaces. With this method, models with poorly parameterized NURBS surfaces can be meshed successfully.

Effect of Offset of Bearing on Radiation Sound and Vibration in the Gear System (기어장치에서 베어링의 설치위치가 소음특성에 미치는 영향)

  • 류성기;이중희
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.1
    • /
    • pp.34-39
    • /
    • 1998
  • This paper describes a evaluation method of sound power radiated from the vibrating faces of a single stage gear box using sound radiation. The vibration caused from meshing gears is transmitted to the gear box faces through shafts and bearings. A Boundary Element Method (BEM) is developed to calculate the sound power radiated from the faces with their velocity response which is based on the Building Block Approach (BBA). Radiation efficiency as well as the sound intensity on the surface of the gear box is also calculated. Sound power of the gear box is larger in the case that bearings have offset to the wall of the gear box than that bearings are on the center of the gear box. The sound power increases with the augmentation of the offset.

  • PDF

Aerodynamic Analysis of Passenger Car with High Accuracy Using H-refinement (H-분할법을 이용한 승용차의 고정도 공력특성 해석)

  • 김태훈;정수진
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.5
    • /
    • pp.33-41
    • /
    • 2000
  • Three dimensional flow fields around passenger car body was computed by PAM-FLOW, well-known and validated computer program for thermal and fluid analysis. Regarding the computational method, a Navier-Stokes solver based on finite element method with various turbulent models and adaptive grid technique (H-refinement)was adopted. The results were physically reasonable and compared with experimental data, giving good agreement. It was found that three dimensional flow simulation with H-refinement technique had potential for prediction of low fie이 around vehicle and the ability to predict vortex in the wake, which is vital for CFD to be used for automobile aerodynamic calculation.

  • PDF

Dynamic Contact Analysis of Spur Gears (평기어의 동접촉 해석)

  • Lee, Ki-Su;Jang, Tae-Sa
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.6
    • /
    • pp.148-159
    • /
    • 1999
  • A numerical method is presented for the dynamic analysis of spur gears rotating with very high angular speeds. For an efficient computation each gear is assumed to consist of a rotating rigid disk and an elastic tooth having mass, and finite element formulations are used for the equations of motion of the tooth. The geometric constraint is imposed between the rigid disk and the elastic tooth to fix them, and contact condition is imposed between the meshing teeth of the gears. At each iteration of each time step the Lagrange multiplier and contact force are revised by using the constraint error vector, and then the whole equations of motion are time integrated with the given Lagrange multiplier and contact force. For the accurate solution the velocity and acceleration constraints as well as the displacement constraint are satisfied by the monotone reductions of the constraint error vectors. Computing procedures associated with the iterative schemes are explained and numerical simulations are conducted with the spur gears.

  • PDF

A Coupled Unbalance Response Analysis of Geared Two-Shaft Rotor-Bearing System (2축 로터-베어링 시스템의 연성 불균형 응답해석)

  • 이안성;하진웅
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.220-226
    • /
    • 2002
  • A general solution method is presented to obtain the unbalance response orbit from the finite element based equations of motion of a gear-coupled two-shaft rotor-bearing system. Particularly, are proposed the analytical solutions of major and minor axis radii of the orbit. The method has been applied to analyze the unbalance response of a 800 refrigeration-ton turbo-chiller rotor-bearing system, having a bull-pinion speed increasing gear. The bumps of unbalance responses have been observed at the first torsional natural frequency due to the coupling of lateral and torsional dynamics by the gear meshing. Further, the proposed analytical solutions have been validated with results obtained by a full numerical approach.

  • PDF

Automatic Generation of Finite Element Meshes by Regenerating NURBS Surfaces (NURBS 곡면 재생성을 통한 유한 요소망의 자동 생성)

  • 박정민;채수원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.784-787
    • /
    • 2002
  • The NURBS surfaces are widely employed for exchanging geometric models between different CAD/CAE systems. However if the input NURBS surfaces are poorly parameterized, most surface meshing algorithms may fail or the constructed meshes can be ill-conditioned. In this paper presents a new method is presented that can generate well conditioned meshes even on poorly parameterized NURBS surfaces by regenerating NURBS surfaces. To begin with, adequate Points are sample on original poorly parameterized surfaces and new surfaces are created by interpolating these points. And then. mesh generation is performed on new surfaces. With this method, models with poorly parameterized NURBS surfaces can be meshed successfully.

  • PDF

Acoustic performance of industrial mufflers with CAE modeling and simulation

  • Jeon, Soohong;Kim, Daehwan;Hong, Chinsuk;Jeong, Weuibong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.4
    • /
    • pp.935-946
    • /
    • 2014
  • This paper investigates the noise transmission performance of industrial mufflers widely used in ships based on the CAE modeling and simulation. Since the industrial mufflers have very complicated internal structures, the conventional Transfer Matrix Method (TMM) is of limited use. The CAE modeling and simulation is therefore required to incorporate commercial softwares: CATIA for geometry modeling, MSC/PATRAN for FE meshing and LMS/SYSNOISE for analysis. Main sources of difficulties in this study are led by complicated arrangement of reactive elements, perforated walls and absorption materials. The reactive elements and absorbent materials are modeled by applying boundary conditions given by impedance. The perforated walls are modeled by applying the transfer impedance on the duplicated node mesh. The CAE approach presented in this paper is verified by comparing with the theoretical solution of a concentric-tube resonator and is applied for industrial mufflers.

Vibration Analysis of Geared Rotor System (기어전동 회전축계의 진동해석)

  • Kim, K.D.;Kim, Y.H.;Yang, B.S.;Lee, S.J.
    • Journal of Power System Engineering
    • /
    • v.4 no.1
    • /
    • pp.60-67
    • /
    • 2000
  • As the speed of rotating machines increases and also their weight decreases, the coupling between lateral and torsional vibrations must be considered. In the past, rotordynamics and geardynamics have tended to treat the lateral and torsional vibrations of the system elements as separate and decoupled mechanisms. In the paper, the coupled lateral-torsional free and forced vibration of rotors trained by gears is analyzed using finite element method. Also the complicated variation of the meshing stiffness as a function of contact point along the line of action is estimated correctly. The gear mesh model is assumed to be linear with constant average mesh stiffness.

  • PDF

Shape Function Modification for the Imposition of EFGM Essential Boundary Conditions (EFGM에서 필수경계조건 처리를 위한 형상함수 수정법)

  • Seok, Byeong-Ho;Song, Tae-Han;Im, Jang-Geun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.3 s.174
    • /
    • pp.803-809
    • /
    • 2000
  • For the effective analysis of an engineering problem, meshless methods which require only positioning finite points without the element meshing recently have been proposed and being studied extensively. Meshless methods have difficulty in imposing essential boundary conditions directly, because non-interpolate shape functions originated from an approximation process are used. So some techniques, which are Lagrange multiplier method, modified variational principles and coupling with finite elements and so on, were introduced in order to impose essential boundary conditions. In spite of these methods, imposition of essential boundary conditions have still many problems like as non-positive definiteness, inaccuracy and negation of meshless characteristics. In this paper, we propose a new method which modifies shape function. Through numerical tests, convergence, accuracy and validity of this method are compared with the standard EFGM which uses Lagrange multiplier method or modified variational principles. According to this study, the proposed method shows the comparable accuracy and efficiency.