• Title/Summary/Keyword: Meshing Pattern

Search Result 16, Processing Time 0.036 seconds

Research on Deleting the Overlapped Geometric Entities of a Tire for Enhancing Analysis Performance (타이어 해석을 위한 중첩된 기하 요소의 제거에 대한 연구)

  • Lee, Kang-Soo
    • Korean Journal of Computational Design and Engineering
    • /
    • v.20 no.2
    • /
    • pp.104-113
    • /
    • 2015
  • In developing a tire, many CAE analyses are performed to make a better tire. But its meshing work is not easy, and it takes much time. One of the reasons of taking much time is that there are many overlapped geometric entities in CAD data that are modeled in CAD system by CAD engineers. In this study, we studied about the features of the overlapped geometric entities, and the method to find out and delete them. I developed a program using the proposed algorithm, and applied it in meshing tire pattern and tire case. I proved that the time in meshing a tire reduced dramatically by removing overlapped geometric entities by using the developed program.

Dynamic Remeshing for Real-Time Representation of Thin-Shell Tearing Simulations on the GPU

  • Jong-Hyun Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.12
    • /
    • pp.89-96
    • /
    • 2023
  • In this paper, we propose a GPU-based method for real-time processing of dynamic re-meshing required for tearing cloth. Thin shell materials are used in various fields such as physics-based simulation/animation, games, and virtual reality. Tearing the fabric requires dynamically updating the geometry and connectivity, making the process complex and computationally intensive. This process needs to be fast, especially when dealing with interactive content. Most methods perform re-meshing through low-resolution simulations to maintain real-time, or rely on an already segmented pattern, which is not considered dynamic re-meshing, and the quality of the torn pattern is low. In this paper, we propose a new GPU-optimized dynamic re-meshing algorithm that enables real-time processing of high-resolution fabric tears. The method proposed in this paper can be used for virtual surgical simulation and physics-based modeling in games and virtual environments that require real-time, as it allows dynamic re-meshing rather than pre-split meshes.

Simulation of Meshing for the Spur Gear Drive with Modified Tooth Surfaces

  • Seol, In-Hwan;Chung, Soon-Bae
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.490-498
    • /
    • 2000
  • The authors have proposed methods (lead crowning and profile modification) for modifying the geometry of spur gears and investigated the contact pattern as well as the transmission errors to recommend the appropriate amount of modification. Based on the investigation, dynamic load of the modified spur gear drive has been calculated, which is helpful to predict the life of the designed gear drive. Computer programs for simulation of meshing, contact and dynamics of the modified spur gears have been developed. The developed theory is illustrated with numerical examples.

  • PDF

Automatic Generation of Tetrahedral Meshes from General Sections (일반 단면으로부터 사면체 요소망의 자동생성)

  • Chae, Su-Won;Lee, Gyu-Min;Sin, Sang-Yeop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.1 s.173
    • /
    • pp.196-205
    • /
    • 2000
  • Computed Tomography (CT), Nuclear Magnetic Resonance Imaging (MR1) and some ultrasound techniques make it possible to obtain cross sections of human body or mechanical parts. In CAD system, a series of sectional surfaces can also be obtained from solid models of 3D objects. In this paper we introduce a tetrahedral meshing algorithm from these series of general sections using basic operators. In this scheme. general sections of three-dimensional object are triangulated first and side surfaces between two sections are triangulated by the use of tiling process. Finally tetrahedral meshing process is performed on each layer of 3D objects, which is composed of two general sections and one side surface.

Experimental Study on Production Characteristics of Straight Bevel Gear using a Polyjet Method 3D Printer (Polyjet방식 3D 프린터를 이용한 스트레이트 베벨기어의 제작 특성에 관한 실험적 연구)

  • Kim, Hae-Ji
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.6
    • /
    • pp.63-68
    • /
    • 2015
  • Recently, 3D printer technologies have been used in many research efforts for high precision manufacturing. In particular, the rapid prototyping technology has been developing rapidly, because it can be manufactured in a short time with a 3D designed shape. This paper relates to the production characteristics of the straight bevel gear designed using a 3D print using the PolyJet method. The characteristics of a 3D printed straight bevel gear were compared with a machined straight bevel gear. The accuracy of the produced straight bevel gear was evaluated by backlash, meshing pattern, face angle, root angle, and surface roughness.

Fault Detection and Damage Pattern Analysis of a Gearbox Using the Power Spectra Density and Artificial Neural Network (파워스펙트럼 및 신경망회로를 이용한 기어박스의 결함진단 및 결함형태 분류에 관한 연구)

  • Lee, Sang-Kwon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.4
    • /
    • pp.537-543
    • /
    • 2003
  • Transient vibration generated by developing localized fault in gear can be used as indicators in gear fault detection. This vibration signal suffers from the background noise such as gear meshing frequency and its harmonics and broadband noise. Thus in order to extract the information about the only gear fault from the raw vibration signal measured on the gearbox this signal is processed to reduce the background noise with many kinds of signal-processing tools. However, these signal-processing tools are often very complex and time waste. Thus. in this paper. we propose a novel approach detecting the damage of gearbox and analyzing its pattern using the raw vibration signal. In order to do this, the residual signal. which consists of the sideband components of the gear meshing frequent) and its harmonics frequencies, is extracted from the raw signal by the power spectral density (PSD) to obtain the information about the fault and is used as the input data of the artificial neural network (ANN) for analysis of the pattern of gear fault. This novel approach has been very successfully applied to the damage analysis of a laboratory gearbox.

Femoral Fracture load and damage localization pattern prediction based on a quasi-brittle law

  • Nakhli, Zahira;Ben Hatira, Fafa;Pithioux, Martine;Chabrand, Patrick;Saanouni, Khemais
    • Structural Engineering and Mechanics
    • /
    • v.72 no.2
    • /
    • pp.191-201
    • /
    • 2019
  • Finite element analysis is one of the most used tools for studying femoral neck fracture. Nerveless, consensus concerning either the choice of material characteristics, damage law and /or geometric models (linear on nonlinear) remains unreached. In this work, we propose a numerical quasi-brittle damage model to describe the behavior of the proximal femur associated with two methods to evaluate the Young modulus. Eight proximal femur finite elements models were constructed from CT scan data (4 donors: 3 women; 1 man). The numerical computations showed a good agreement between the numerical curves (load - displacement) and the experimental ones. A very encouraging result is obtained when a comparison is made between the computed fracture loads and the experimental ones ($R^2=0.825$, Relative error =6.49%). All specific numerical computation provided very fair qualitative matches with the fracture patterns for the sideway fall simulation. Finally, the comparative study based on 32 simulations adopting linear and nonlinear meshing led to the conclusion that the quantitatively results are improved when a nonlinear mesh is used.

EQUIVALENT MATERIAL PROPERTIES OF PERFORATED PLATE WITH TRIANGULAR OR SQUARE PENETRATION PATTERN FOR DYNAMIC ANALYSIS

  • Jhung, Myung-Jo;Jo, Jong-Chull
    • Nuclear Engineering and Technology
    • /
    • v.38 no.7
    • /
    • pp.689-696
    • /
    • 2006
  • For a perforated plate, it is challenging to develop a finite element model due to the necessity of the fine meshing of the plate, especially if it is submerged in fluid. This necessitates the use of a solid plate with equivalent material properties. Unfortunately, the effective elastic constants suggested by the ASME code are deemed not valid for a modal analysis. Therefore, in this study the equivalent material properties of a perforated plate are suggested by performing several finite element analyses with respect to the ligament efficiencies.

Three-Dimensional Finite Element Mesh Generation of Tires Considering Detailed Tread Patterns (상세 트레드 패턴을 반영한 3차원 타이어 메쉬 생성)

  • Cho, J.R.;Kim, K.W.;Hong, S.I.;Kim, N.J.;Kim, K.W.
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.330-335
    • /
    • 2001
  • While contacting directly with ground, the tire tread part is in shape of complex patterns of variable ASDs(anti-skid depth) for various tire performances. However, owing to the painstaking mesh generation job and the extremely long CPU-time, conventional 3-D tire analyses have been performed by either neglecting tread pattern or modeling circumferential grooves only. As a result, such simplified analysis models lead to considerably poor numerical expectations. This paper addresses the development of a systematic 3-D mesh generation of tires considering the detailed tread pattern. Basically, tire body and tread meshes are separately generated, and then both are to be combined. For the systematic mesh generation, which consists of a series of meshing steps, we develop in-house subroutines which utilize the useful functions of I-DEAS solid modeler. The detailed pattern mesh can be imparted partially or completely.

  • PDF

Automated Mesh Generation For Finite Element Analysis In Metal Forming (소성 가공의 유한 요소 해석을 위한 자동 요소망 생성)

  • 이상훈;오수익
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.10a
    • /
    • pp.17-23
    • /
    • 1997
  • In the two-dimensional Finite Element Method for forming simulation, mesh generation and remeshing process are very significant. In this paper, using the modified splitting mesh generation algorithm, we can overcome the limitation of existing techniques and acquire mesh, which has optimal mesh density. A modified splitting algorithm for automatically generating quadrilateral mesh within a complex domain is described. Unnecessary meshing process for density representation is removed. Especially, during the mesh generation with high gradient density like as shear band representation, the modified mesh density scheme, which will generate quadrilateral mesh with the minimized error, which takes effect on FEM solver, is introduced.

  • PDF