• Title/Summary/Keyword: Mesh-up

Search Result 337, Processing Time 0.029 seconds

Aerodynamic Characteristics of Impulse Turbine with an End Plate for Wave Energy Conversion

  • HYUN BEOM SOO;MOON JAE SEUNG;HONG SEOK WON;KIM KI SUP
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.6 s.67
    • /
    • pp.1-7
    • /
    • 2005
  • This paper deals with the design and aerodynamic analysis of a special-type impulse turbine, with an end plate for wave energy conversion. Numerical analysis was performed using a CFD code, FLUENT. The main idea of the proposed end plate was to minimize the adverse effect of tip clearance of turbine blade, and was borrowed from ducted propeller, with so-called penetrating end plate for special purpose marine vehicles. Results show that efficiency increases up to $5\%$, depending on the flow coefficient; a higher flow coefficient yields increased efficiency. Decrease of input coefficient CAwith an end plate is the main reason for higher efficiency. Performance of end plate at various design parameters, as well as flow conditions, was investigated; the advantages and disadvantages of the presentimpulse turbine were also discussed.

Discrete Optimal Design of Composite Rotor Blade Cross-Section (복합재 로터 블레이드 단면 이산최적설계)

  • Won, You-Jin;Lee, Soo-Yong
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.21 no.2
    • /
    • pp.7-14
    • /
    • 2013
  • In this paper, the optimal design of composite rotor blade cross-section is performed using a genetic algorithm. Skin thickness, torsion box thickness and skin lay-up angle are adopted as discrete design variables. The position and width of a torsion box are considered as continuous variables. An object function of optimal design is to minimize the mass of a rotor blade, and constraints are failure index, center mass, natural frequency and blade minimum mass per unit length. Finally, design variables such as the thickness and lay-up angles of a skin, and the thickness, position and width of a torsion box are determined by using an in-house program developed for the optimal design of rotor blade cross-section.

Seismic shear strengthening of R/C beams and columns with expanded steel meshes

  • Morshed, Reza;Kazemi, Mohammad Taghi
    • Structural Engineering and Mechanics
    • /
    • v.21 no.3
    • /
    • pp.333-350
    • /
    • 2005
  • This paper presents results of an experimental study to evaluate a new retrofit technique for strengthening shear deficient short concrete beams and columns. In this technique a mortar jacket reinforced with expanded steel meshes is used for retrofitting. Twelve short reinforced concrete specimens, including eight retrofitted ones, were tested. Six specimens were tested under a constant compressive axial force of 15% of column axial load capacity based on original concrete gross section, $A_g$, and the concrete compressive strength, ${f_c}^{\prime}$. Main variables were the spacing of ties in original specimens and the volume fraction of expanded metal in jackets. Original specimens failed before reaching their nominal calculated flexural strength, $M_n$, and had very poor ductility. Strengthened specimens reached their nominal flexural strength and had a ductility capacity factor of up to 8 for the beams and up to 5.5 for the columns. Based on the test results, it can be concluded that expanded steel meshes can be used effectively to strengthen shear deficient concrete members.

Optimal Design of Composite Rotor Blade Cross-Section using Discrete Design variable (이산설계변수를 고려한 복합재 로터블레이드 단면 최적설계)

  • Won, You-Jin;Lee, Soo-Yong
    • Journal of Aerospace System Engineering
    • /
    • v.8 no.1
    • /
    • pp.12-17
    • /
    • 2014
  • In this paper, optimal design of composite rotor blade cross-section to consider manufacturability was performed. Skin thickness, torsion box thickness and skin lay-up angle were adopted as discrete design variables and The position and width of a torsion box were considered as continuous variables. An object function of optimal design is to minimize the mass of a rotor blade, and various constraints such as failure index, center mass, shear center, natural frequency and blade minimum mass per unit length were adopted. Finally, design variables such as the thickness and lay-up angles of a skin, and the thickness, position and width of a torsion box were determined by using an in-house program developed for the optimal design of rotor blade cross-section.

Finite Element Analysis of Nanoindentation Process and its Experimental Verification (나노 인덴테이션 공정의 유한요소해석 및 실험적 검증)

  • 이정우;윤성원;강충길
    • Transactions of Materials Processing
    • /
    • v.12 no.4
    • /
    • pp.382-387
    • /
    • 2003
  • In this study, to achieve the optimal conditions for mechanical hyper-fine pattern fabrication process, deformation behaviors of the materials during indentation were studied with numerical method by ABAQUS S/W. Brittle materials (Si, Pyrex glass 7740) were used as specimens, and forming conditions to reduce the elastic recovery and pile-up were proposed. The indenter was modeled a rigid surface. Minimum mesh sizes of specimens are 1-10nm. Comparisons between the experimental data and numerical result demonstrated that the finite element approach is capable of reproducing the loading-unloading behavior of a nanoindentation test.

Mock-Up Test on The Performance for Wind Resistance of Improved Curing Sheet in Cold Weather Concrete (한중 콘크리트용 개량형 양생막의 내풍성능에 관한 Mock-Up 실험)

  • Choi, Hyun-Kyu;Baek, Dae-Hyun;Son, Myong-Sik;Lee, Ho-Seong;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.05a
    • /
    • pp.37-38
    • /
    • 2011
  • This study is to analyze and compare improved curing sheet with blue sheet in order to verify the performance related to tensile stress. As results, it is confirmed that improved curing sheet(MP+BBS1) is better than the blue sheet at using field already. Synthetically, curing sheet improved by MP is analyzed to be available instead of the original because it is superior to tensile stress.

  • PDF

Finite Element Analysis of Nano Deformation for Hyper-fine Pattern Fabrication by Application of Nano-scratch Process (나노스크래치 공정을 이용하여 극미세 패턴을 제작하기 위한 나노 변형의 유한요소해석)

  • 이정우;강충길;윤성원
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.3
    • /
    • pp.139-146
    • /
    • 2004
  • In this study, to achieve the optimal conditions for mechanical hyper-fine pattern fabrication process, deformation behavior of the materials during indentation scratch test was studied with numerical method by ABAQUS S/W. Brittle materials (Si, Pyrex glass 7740) were used as specimens, and forming conditions to reduce the elastic recovery and pile-up were proposed. The indenter was modeled as a rigid surface. Minimum mesh sizes of specimens are 1-l0nm. Variables of the nanoindentation scratch test analysis are scratching speed, scratching load, tip radius and tip geometry. The nano-indentation scratch tests were performed by using the Berkovich pyramidal diamond indenter. Comparison between the experimental data and numerical result demonstrated that the FEM approach can be a good model of the nanoindentation scratch test. The result of the investigation will be applied to the fabrication of the hyper-fine pattern.

Utility of a modified components separation for abdominal wall reconstruction in the liver and kidney transplant population

  • Black, Cara K;Zolper, Elizabeth G;Walters, Elliot T;Wang, Jessica;Martinez, Jesus;Tran, Andrew;Naz, Iram;Kotha, Vikas;Kim, Paul J;Sher, Sarah R;Evans, Karen K
    • Archives of Plastic Surgery
    • /
    • v.46 no.5
    • /
    • pp.462-469
    • /
    • 2019
  • Background Incisional hernia is a common complication following visceral organ transplantation. Transplant patients are at increased risk of primary and recurrent hernias due to chronic immune suppression and large incisions. We conducted a retrospective review of patients with a history of liver or kidney transplantation who underwent hernia repair to analyze outcomes and hernia recurrence. Methods This is a single center, retrospective review of 19 patients who received kidney and/or liver transplantation prior to presenting with an incisional hernia from 2011 to 2017. All hernias were repaired with open component separation technique (CST) with biologic mesh underlay. Results The mean age of patients was $61.0{\pm}8.3years\;old$, with a mean body mass index of $28.4{\pm}4.8kg/m^2$, 15 males (78.9%), and four females (21.1%). There were seven kidney, 11 liver, and one combined liver and kidney transplant patients. The most common comorbidities were hypertension (16 patients, 84.2%), diabetes (9 patients, 47.4%), and tobacco use (8 patients, 42.1%). Complications occurred in six patients (31.6%) including hematoma (1/19), abscess (1/19), seroma (2/19), and hernia recurrence (3/19) at mean follow-up of $28.7{\pm}22.8months$. With the exception of two patients with incomplete follow-up, all patients healed at a median time of 27 days. Conclusions This small, retrospective series of complex open CST in transplant patients shows acceptable rates of long-term hernia recurrence and healing. By using a multidisciplinary approach for abdominal wall reconstruction, we believe that modified open CST with biologic mesh is a safe and effective technique in the transplant population with complex abdominal hernias.

ASSESSMENT OF MARS FOR DIRECT CONTACT CONDENSATION IN THE CORE MAKE-UP TANK (노심보충수탱크의 직접접촉응축에 대한 MARS의 계산능력평가)

  • Park, Keun Tae;Park, Ik Kyu;Lee, Seung Wook;Park, Hyun Sik
    • Journal of computational fluids engineering
    • /
    • v.19 no.1
    • /
    • pp.64-72
    • /
    • 2014
  • This study aimed at assessing the analysis capability of thermal-hydraulic computer code, MARS for the behaviors of the core make-up tank (CMT). The sensitivity study on the nodalization to simulate the CMT was conducted, and the MARS calculations were compared with KAIST experimental data and RELAP5/MOD3.3 calculations. The 12-node model was fixed through a nodalization study to investigate the effect of the number of nodes in the CMT (2-, 4-, 8-, 12-, 16-node). The sensitivity studies on various parameters, such as water subcooling of the CMT, steam pressure, and natural circulation flow were done. MARS calculations were reasonable in the injection time and the effects of several parameters on the CMT behaviors even though the mesh-dependency should be properly treated for reactor applications.

Triangular Grid Homogenization Using Local Improvement Method (국소개선기법을 이용한 삼각격자 균질화)

  • Choi, Hyung-Il;Jun, Sang-Wook;Lee, Dong-Ho;Lee, Do-Hyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.8
    • /
    • pp.1-7
    • /
    • 2005
  • This paper proposes a local improvement method that combines extended topological clean up and optimization-based smoothing for homogenizing triangular grid system. First extended topological clean up procedures are applied to improve the connectivities of grid elements. Then, local optimization-based smoothing is performed for maximizing the distortion metric that measures grid quality. Using the local improvement strategy, we implement the grid homogenizations for two triangular grid examples. It is shown that the suggested algorithm improves the quality of the triangular grids to a great degree in an efficient manner and also can be easily applied to the remeshing algorithm in adaptive mesh refinement technique.