• Title/Summary/Keyword: Mesh Surface

Search Result 800, Processing Time 0.025 seconds

Thin Metal Meshes for Touch Screen Panel Prepared by Photolithography (포토리소그래피 공정으로 제작된 터치스크린패널용 금속메시)

  • Kim, Seo-Han;Song, Pung-Keun
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.6
    • /
    • pp.575-579
    • /
    • 2016
  • The metal mesh films with thickness of 1.0, 1.5, $2.0{\mu}m$ were prepared by photolithography using Ag, Al, and Cu metals. Every metal films were showed C(111) preferred orientation and Ag showed the lowest resistivity and followed by Al and Cu. The transmittance of almost films were higher than 90%. But, the Ag film with thickness of $2.0{\mu}m$ was delaminated during photolithography process due to low adhesion. So, Cu and Ti metal films were introduced under Ag film to improve adhesion property. The Cu film showed higher adhesion properties compared to Ti film. Furthermore, the Ti films that deposited on Ag film showed higher acid resistance.

Numerical analysis of three-dimensional sloshing flow using least-square and level-set method (최소자승법과 Level-set 방법을 이용한 3차원 슬로싱 유동의 수치해석)

  • Choi, Hyoung-Gwon
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2401-2405
    • /
    • 2008
  • In the present study, a three-dimensional least square/level set based two-phase flow code was developed for the simulation of three-dimensional sloshing problems using finite element discretization. The present method can be utilized for the analysis of a free surface flow problem in a complex geometry due to the feature of FEM. Since the finite element method is employed for the spatial discretization of governing equations, an unstructured mesh can be naturally adopted for the level set simulation of a free surface flow without an additional load for the code development except that solution methods of the hyperbolic type redistancing and advection equations of the level set function should be devised in order to give a bounded solution on the unstructured mesh. From the numerical experiments of the present study, it is shown that the proposed method is both robust and accurate for the simulation of three-dimensional sloshing problems.

  • PDF

Three Dimensional Finite Element Inverse Analysis of Rectangular Cup and S-Rail Forming Processes using a Direct Mesh Mapping Method (직접 격자 사상법을 이용한 직사각컵 및 S-Rail 성형공정의 3차원 유한요소 역해석)

  • Kim S. H.;Huh H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.81-84
    • /
    • 2001
  • An inverse finite element approach is employed for more capability to design the optimum blank shape from the desired final shape with small amount of computation time and effort. In some drawing or stamping simulation with inverse method, it is difficult to apply inverse scheme due to the large aspect ratio or steep vertical angle of inclination. The reason is that initial guesses are hard to make out with present method for those cases. In this paper, a direct mesh marring scheme to generate initial guess on the sliding constraint surface described by finite element patches is suggested for one step inverse analysis to calculate initial blank shape. Radial type mapping is adopted for the simulation of rectangular cup drawing process with large aspect ratio and parallel type mapping for the simulation of S-Rail forming process with steep vertical angle of inclination.

  • PDF

Boundary Layer Mesh Generation for Three-Dimensional Geometries with Thin Thickness (얇은 두께의 3차원 형상에 경계층 요소 생성)

  • Kwon Ki Youn;Chae Soo-Won;Lee Byung Chai
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.5 s.236
    • /
    • pp.671-679
    • /
    • 2005
  • A method of generation boundary layer mesh has been presented. This paper describes the generation of semi-unstructured prismatic/tetrahedral meshes for three-dimensional geometries with thin thickness. By of fretting of surface triangle elements prismatic/tetrahedral meshes are generated and using the node relocation method of this research intersected meshes can be efficiently improved. Finally tetrahedral meshes are automatically generated at the rest of the domain. Sample meshes are constructed to demonstrate the mesh generating capability of the proposed algorithm.

Toolpath Generation for Three-axis Round-end Milling of Triangular Mesh Surfaces (삼각망 곡면의 3축 라운드엔드밀 가공을 위한 공구경로 생성)

  • Chung, Yun-Chan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.2
    • /
    • pp.133-140
    • /
    • 2009
  • Presented in this paper is a method to generate round-endmill toolpaths for sculptured surfaces represented as a triangular mesh model. The proposed method is applicable in toolpath generation for ball-endmills and flat-endmills because the round-endmill is a generalized tool in three-axis NC (numerical control) milling. The method uses a wireframe model as the offset model that represents a cutter location surface. Since wireframe models are relatively simple and fast to calculate, the proposed method can process large models and keep high precision. Intersection points with the wireframe offset model and a tool guide plane are calculated, and intersection curves are constructed by tracing the intersection points. The final step of the method is extracting regular curves from the intersection curves including degenerate and self-intersected segments. The proposed method is implemented and tested, and a practical example is presented.

Offset of STL Model Generated from Solid Model (솔리드 STL 모델의 옵셋 방법)

  • Kim, Su-Jin;Yang, Min-Yang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.9 s.174
    • /
    • pp.202-211
    • /
    • 2005
  • This paper introduces and illustrates the results of a new method fer offsetting triangular mesh by moving all vertices along the multiple normal vectors of a vertex. The multiple normal vectors of a vertex are set the same as the normal vectors of the faces surrounding the vertex, while the two vectors with the smallest difference are joined repeatedly until the difference is smaller than allowance. Offsetting with the multiple normal vectors of a vertex does not create a gap or overlap at the smooth edges, thereby making the mesh size uniform and the computation time short. In addition, this offsetting method is accurate at the sharp edges because the vertices are moved to the normal directions of faces and joined by the blend surface. The method is also useful for rapid prototyping and tool path generation if the triangular mesh is tessellated part of the solid models with curved surfaces and sharp edges. The suggested method and previous methods are implemented on a PC using C++ and illustrated using an OpenGL library.

S-Octree: An Extension to Spherical Coordinates

  • Park, Tae-Jung;Lee, Sung-Ho;Kim, Chang-Hun
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.12
    • /
    • pp.1748-1759
    • /
    • 2010
  • We extend the octree subdivision process from Cartesian coordinates to spherical coordinates to develop more efficient space-partitioning structure for surface models. As an application of the proposed structure, we apply the octree subdivision in spherical coordinates ("S-Octree") to geometry compression in progressive mesh coding. Most previous researches on geometry-driven progressive mesh compression are devoted to improve predictability of geometry information. Unlike this, we focus on the efficient information storage for the space-partitioning structure. By eliminating void space at initial stage and aligning the R axis for the important components in geometry information, the S-Octree improves the efficiency in geometry information coding. Several meshes are tested in the progressive mesh coding based on the S-Octree and the results for performance parameters are presented.

Numerical Analysis for Prediction of Fatigue Crack Opening Level

  • Choi, Hyeon Chang
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.11
    • /
    • pp.1989-1995
    • /
    • 2004
  • Finite element analysis(FEA) is the most popular numerical method to simulate plasticity-induced fatigue crack closure and can predict fatigue crack closure behavior. Finite element analysis under plane stress state using 4-node isoparametric elements is performed to investigate the detailed closure behavior of fatigue cracks and the numerical results are compared with experimental results. The mesh of constant size elements on the crack surface can not correctly predict the opening level for fatigue crack as shown in the previous works. The crack opening behavior for the size mesh with a linear change shows almost flat stress level after a crack tip has passed by the monotonic plastic zone. The prediction of crack opening level presents a good agreement with published experimental data regardless of stress ratios, which are using the mesh of the elements that are in proportion to the reversed plastic zone size considering the opening stress intensity factors. Numerical interpolation results of finite element analysis can precisely predict the crack opening level. This method shows a good agreement with the experimental data regardless of the stress ratios and kinds of materials.

Automatic Generation of Quadrilateral Meshes on Trimmed Surfaces (트림 곡면상에서 사각형 요소망의 자동 생성)

  • 김형일;채수원
    • Korean Journal of Computational Design and Engineering
    • /
    • v.4 no.2
    • /
    • pp.153-161
    • /
    • 1999
  • An atomatic mesh generation scheme with unstructured quadrilateral elements on trimmed surfaces has been developed. Trimmed surfaces are often encountered in modeling of structures with complex shapes such as aircrafts, automobile structures, pressure vessels and etc. For unstructured mesh generation with quadrilateral elements, a domain decomposition algorithm employing loop operators has been used. Mesh generation on trimmed surface is performed in three steps. First, trimmed surfaces with holes or cuts are transformed to th largest projection planes in which the meshes are constructed. The constructed meshes are transformed to the u-v parametric plane and then finally to the original 3D surfaces. Th exact locations of holes or cuts in projection planes are determined by the Newton-Raphson method. Sample meshes are constructed to demonstrate the effectiveness of the proposed algorithm.

  • PDF

Control of Impinging Jet Heat Transfer with Mesh Screens (Mesh 스크린을 이용한 충돌제트 열전달 제어에 관한 연구)

  • Cho, Joung-Won;Lee, Sang-Joon
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.267-271
    • /
    • 2000
  • The local heat transfer rate of an axisymmetric submerged air jet impinging on normal to a heated flat plate was investigated experimentally with varying solidity of mesh screen. The mean velocity and turbulent Intensity profiles of streamwise velocity component were measured using a hot-wire anemometry. The temperature distribution on the heated flat surface was measured with thermocouples. The screen installed in front of the nozzle exit(behind of 35mm) modify the jet flow structure and local heat transfer characteristics. For higher solidity screen, turbulence intensity at core lesion is high and increases the local heat transfer rate at nozzle-to-plate spacings(L/D<6). For larger nozzle-to-plate spacings(L/D>6), however, the turbulent Intensities of all screens tested in this study approach to an asymptotic curve, but the small mean velocity at the core region reduces the local heat transfer rate for high solidity screens.

  • PDF