• Title/Summary/Keyword: Mesh Network Structure

Search Result 48, Processing Time 0.019 seconds

A Load Balancing Method Using Mesh Network Structure in the Grid Database (그리드 데이터베이스에서 메쉬 연결구조를 이용한 부하 분산)

  • Lee, Soon-Jo
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.15 no.5
    • /
    • pp.97-104
    • /
    • 2010
  • In this paper, mesh network structure is applied to solve the load balancing problems in the Grid database. Data of the Grid database is replicated to several node for enhanced performance. Therefore, load balancing for user's query is selected node that evaluated workload in it. Existing researches are using passive load balancing method that selected another node after then node overflowed workload. It is inefficient to be applied to Gird database that has a number of node and user's queries almost changes dynamically. The proposed method connected each node which includes the same data through mesh network structure. When user's query occurs, it select node that has the lowest workload. The performance evaluation shows that proposed method performs better than the existing methods.

Mesh topological form design and geometrical configuration generation for cable-network antenna reflector structures

  • Liu, Wang;Li, Dong-Xu;Jiang, Jian-Ping
    • Structural Engineering and Mechanics
    • /
    • v.45 no.3
    • /
    • pp.411-422
    • /
    • 2013
  • A well-designed mesh shape of the cable net is of essential significance to achieve high performance of cable-network antenna reflectors. This paper is concerned with the mesh design problem for such antenna reflector structure. Two new methods for creating the topological forms of the cable net are first presented. Among those, the cyclosymmetry method is useful to generate different polygon-faceted meshes, while the topological mapping method is suitable for acquiring triangle-faceted meshes with different mesh grid densities. Then, the desired spatial paraboloidal mesh geometrical configuration in the state of static equilibrium is formed by applying a simple mesh generation approach based on the force density method. The main contribution of this study is that a general technical guide for how to create the connectivities between the nodes and members in the cable net is provided from the topological point of view. With the new idea presented in this paper, multitudes of mesh configurations with different net patterns can be sought by a certain rule rather than by empiricism, which consequently gives a valuable technical reference for the mesh design of this type of cable-network structures in the engineering.

An Effective Multi-hop Relay Algorithm in Wireless Mesh Network (무선 메쉬 네트워크 환경에서 효율적인 다중 홉 전달 기법)

  • Kim, Young-An;Park, Chul-Hyun;Hong, Choong-Seon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.10B
    • /
    • pp.872-882
    • /
    • 2006
  • The Wireless Mesh Network uses a wireless communication technology with transmission rates similar to that of a cable, which is used as a backbone network. The topology structure is in a Mesh form which resembles an Ad-hoc network, however a metric is needed in order to set the channel and channel methods since the operation intentions and interior motions are different. This thesis proposes a metric(ETR : Expected Transmission Rate) that sets the channel with physical link performance and multi hop transmission capabilities. This metric will also be based on multi channel creation methods and Hop-by-hop routing techniques for an effective multi hop transmission with no loops.

An Efficient Peer-to-Peer Streaming Scheme Based on a Push-Mesh Structure (푸시-메시 구조 기반의 효율적인 피어투피어 스트리밍 기법)

  • Kim, Jin-Sung;Kim, Dong-Il;Kim, Eun-Sam;Pae, Sung-Il
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.3
    • /
    • pp.81-89
    • /
    • 2010
  • The research on peer-to-peer streaming schemes has largely focused on tree-push and mesh-pull structures. However, the tree-push structure has a defect that the tree restructuring time is long, and the mesh-pull structure has long startup delay and lag time from source servers. In this paper, we propose a new peer-to-peer live streaming scheme based on a push-mesh structure that takes advantages of tree-push and mesh-pull structure simultaneously. This structure basically provides the mesh-pull mechanism for data transmission and utilizes peers with high network upload capacity. It also supports the push mechanism along with paths from a source server, super peers, and selected general peers. By NS-2 simulation experiments, we finally show that our proposed scheme can achieve shorter startup delay than the mesh-pull structure, similar lag time to tree-push structure and best playback continuity among the three schemes.

The Optimal Link Scheduling in Half-Duplex Wireless Mesh Networks Using the Constraint Programming (제약식 프로그래밍을 이용한 일방향 전송 무선 메쉬 네트워크에서의 최적 링크 스케쥴링)

  • Kim, Hak-Jin
    • Journal of Information Technology Applications and Management
    • /
    • v.23 no.2
    • /
    • pp.61-80
    • /
    • 2016
  • The wireless mesh network (WMN) is a next-generation technology for data networking that has the advantage in cost and the flexibility in its construction because of not requiring the infra-structure such as the ethernet. This paper focuses on the optimal link scheduling problem under the wireless mesh network to effectuate real-time streaming by using the constraint programming. In particular, Under the limitation of half-duplex transmission in wireless nodes, this paper proposes a solution method to minimize the makespan in scheduling packet transmission from wireless nodes to the gateway in a WMN with no packet transmission conflicts due to the half-duplex transmission. It discusses the conflicts in packet transmission and deduces the condition of feasible schedules, which defines the model for the constraint programming. Finally it comparatively shows and discusses the results using two constraint programming solvers, Gecode and the IBM ILOG CP solver.

D-ARP Scheme for Full Mesh Routing in Partial BMA Network (제한적 BMA 네트워크에서 Full Mesh 라우팅을 위한 D-ARP 기법)

  • Kim, Moon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.8
    • /
    • pp.1088-1094
    • /
    • 2021
  • This paper proposes a partial BMA (Broadcasting Multiple Access) network structure and D-ARP (Distributed Address Resolution Protocol) method in order to support full mesh routing function in the DAMA (Demand Assigned Multiple Access)-based MF-TDMA (Multi Frequency-Time Division Multiple Access) satellite system. The partial BMA network enables legacy router devices and routing protocols to be adopted in the satellite communication system, and decreases the amount of routing protocol overhead. In addition, we introduce the D-ARP method that help a spoke satellite node acquiring the MAC (Media Access Control) address from remote satellite nodes in none BMA satellite network. The D-ARP method provides the MAC address of remote nodes to each other nodes through the broadcasting-enabled satellite channel. And we lastly evaluate and analysis the network performance of the proposed approach.

Design of HCI System of Museum Guide Robot Based on Visual Communication Skill

  • Qingqing Liang
    • Journal of Information Processing Systems
    • /
    • v.20 no.3
    • /
    • pp.328-336
    • /
    • 2024
  • Visual communication is widely used and enhanced in modern society, where there is an increasing demand for spirituality. Museum robots are one of many service robots that can replace humans to provide services such as display, interpretation and dialogue. For the improvement of museum guide robots, the paper proposes a human-robot interaction system based on visual communication skills. The system is based on a deep neural mesh structure and utilizes theoretical analysis of computer vision to introduce a Tiny+CBAM mesh structure in the gesture recognition component. This combines basic gestures and gesture states to design and evaluate gesture actions. The test results indicated that the improved Tiny+CBAM mesh structure could enhance the mean average precision value by 13.56% while maintaining a loss of less than 3 frames per second during static basic gesture recognition. After testing the system's dynamic gesture performance, it was found to be over 95% accurate for all items except double click. Additionally, it was 100% accurate for the action displayed on the current page.

Conceptual Design of Networking Node with Real-time Monitoring for QoS Coordination of Tactical-Mesh Traffic (전술메쉬 트래픽 QoS 조율을 위한 네트워킹 노드의 개념 설계 및 실시간 모니터링)

  • Shin, Jun-Sik;Kang, Moonjoong;Park, Juman;Kwon, Daehoon;Kim, JongWon
    • Smart Media Journal
    • /
    • v.8 no.2
    • /
    • pp.29-38
    • /
    • 2019
  • With the advancement of information and communication technology, tactical networks are continuously being converted to All-IP future tactical networks that integrate all application services based on Internet protocol. Futuristic tactical mesh network is built with tactical WAN (wide area network) nodes that are inter-connected by a mesh structure. In order to guarantee QoS (quality of service) of application services, tactical service mesh (TSM) is suggested as an intermediate layer between infrastructure and application layers for futuristic tactical mesh network. The tactical service mesh requires dynamic QoS monitoring and control for intelligent QoS coordination. However, legacy networking nodes used for existing tactical networks are difficult to support these functionality due to inflexible monitoring support. In order to resolve such matter, we propose a tactical mesh WAN node as a hardware/software co-designed networking node in this paper. The tactical mesh WAN node is conceptually designed to have multi-access networking interfaces and virtualized networking switches by leveraging the DANOS whitebox server/switch. In addition, we explain how to apply eBPF-based traffic monitoring to the tactical mesh WAN node and verify the traffic monitoring feasibility for supporting QoS coordination of tactical-mesh traffic.

Tier-based Proactive Path Selection Mode for Wireless Mesh Networks

  • Fu-Quan, Zhang;Joe, In-Whee;Park, Yong-Jin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.5
    • /
    • pp.1303-1315
    • /
    • 2012
  • In the draft of the IEEE 802.11s standard, a tree topology is established by the proactive tree-building mode of the Hybrid Wireless Mesh Protocol (HWMP). It is used for cases in which the root station (e.g., gateway) is an end point of the majority of the data connections. In the tree topology, the root or central stations (e.g., parent stations) are connected to the other stations (e.g., leaves) that are one level lower than the central station. Such mesh stations are likely to suffer heavily from contention in bottleneck links when the network has a high traffic load. Moreover, the dependence of the network on such stations is a point of vulnerability. A failure of the central station (e.g., a crash or simply going into sleep mode to save energy) can cripple the whole network in the tree topology. This causes performance degradation for end-to-end transmissions. In a connected mesh topology where the stations having two or more radio links between them are connected in such a way that if a failure subsists in any of the links, the other link could provide the redundancy to the network. We propose a scheme to utilize this characteristic by organizing the network into concentric tiers around the root mesh station. The tier structure facilitates path recovery and congestion control. The resulting mode is referred to as Tier-based Proactive Path Selection Mode (TPPSM). The performance of TPPSM is compared with the proactive tree mode of HWMP. Simulation results show that TPPSM has better performance.

Load Balancing and Mobility Management in Multi-homed Wireless Mesh Networks

  • Tran, Minh Tri;Kim, Young-Han;Lee, Jae-Hwoon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.5
    • /
    • pp.959-975
    • /
    • 2011
  • Wireless mesh networks enlarge the wireless coverage area by interconnecting relatively stationary wireless routers (mesh routers). As wireless mesh networks are envisioned to provide high-bandwidth broadband Internet service to a large community of users, the Internet gateway, which acts as a central point of Internet attachment for the mesh networks, is likely to suffer heavily from the scramble for shared wireless resources because of aggregated traffic toward the Internet. It causes performance decrement on end-to-end transmissions. We propose a scheme to balance the load in a mesh network based on link quality variation to different Internet gateways. Moreover, under the mesh coverage, mobile nodes can move around and connect to nearby mesh routers while still keeping the connections to the Internet through the best gateway in terms of link quality. In this structure, gateways perform the balancing procedure through wired links. Information about gateways and mobile node's location is distributed appropriately so that every mesh router can quickly recognize the best gateway as well as the positions of mobile nodes. This distributed information assists mobile nodes to perform fast handoff. Significant benefits are shown by the performance analysis.