• Title/Summary/Keyword: Mesh Analysis

Search Result 1,736, Processing Time 0.038 seconds

A Method for Nonlinear Dynamic Response Analysis of Semi-infinite Foundation Using Mapping (사영에 의한 반무한지반의 비선형해석)

  • Lee Choon-Kil
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.4
    • /
    • pp.5-10
    • /
    • 2006
  • A special finite difference method for nonlinear dynamic response analysis of semi-infinite foundation soil using mapping which transforms semi-infinite domain into finite domain is presented here. For the region of engineering interest, mapping is isometric, and fur far field, shrink mapping which transforms infinite interval into finite interval is adopted. At first, the responses of semi-infinite foundation soil with linear constituting model are computed, and compared with theoretical results and those of existing method. Good agreements are obtained among the results of the proposed method, Lamb's theory and FEM with extensive mesh model. Then the responses of infinite foundation soil are computed by the present method, using small and large mesh model. The results of small and large mesh models agree well with each other, demonstrating the effectiveness of the proposed method.

Automated Finite Element Mesh Generation for Integrated Structural Systems (통합 구조 시스템의 유한요소망 형성의 자동화)

  • Yoon, Chongyul
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.2
    • /
    • pp.77-82
    • /
    • 2023
  • The structural analysis module is an essential part of any integrated structural system. Diverse integrated systems today require, from the analysis module, efficient real-time responses to real-time input such as earthquake signals, extreme weather-related forces, and man-made accidents. An integrated system may also be for the entire life span of a civil structure conceived during the initial conception, developed throughout various design stages, effectively used in construction, and utilized during usage and maintenance. All these integrated systems' essential part is the structural analysis module, which must be automated and computationally efficient so that responses may be almost immediate. The finite element method is often used for structural analysis, and for automation, many effective finite element meshes must be automatically generated for a given analysis. A computationally efficient finite element mesh generation scheme based on the r-h method of mesh refinement using strain deviations from the values at the Gauss points as error estimates from the previous mesh is described. Shape factors are used to sort out overly distorted elements. A standard cantilever beam analyzed by four-node plane stress elements is used as an example to show the effectiveness of the automated algorithm for a time-domain dynamic analysis. Although recent developments in computer hardware and software have made many new applications in integrated structural systems possible, structural analysis still needs to be executed efficiently in real-time. The algorithm applies to diverse integrated systems, including nonlinear analyses and general dynamic problems in earthquake engineering.

THE INVESTIGATION OF HELICOPTER ROTOR AERODYNAMIC ANALYSIS METHODS (헬리콥터 로터 공력해석을 위한 수치적 방법 연구)

  • Park, N.E.;Woo, C.H.;Rho, H.W.;Kim, C.H.;Yee, S.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.04a
    • /
    • pp.120-124
    • /
    • 2007
  • Helicopters and rotary-wing vehicles encounter a wide variety of complex aerodynamic phenomena and these phenomena present substantial challenges for computational fluid dynamics(CFD) models. This investigation presents the rotor aerodynamic analysis items for the helicopter development and variety aerodynamic analysis methods to provide the better solution to researchers and helicopter developers between aerodynamic problems and numerical aerodynamic analysis methods. The numerical methods to make an analysis of helicopter rotor are as below - CFD Modelling : actuator disk model, BET model, fully rotor model,... - Grid : sliding mesh, chimera mesh / structure mesh, unstructure mesh,... - etc. : panel method periodic boundary, quasi-steady simulation, incompressible,... The choice of CFD methodology and the numerical resolution for the overall problem have been driven mostly by available computer speed and memory at any point in time. The combination of the knowledge of aerodynamic analysis items, available computing power and choice of CFD methods now allows the solution of a number of important rotorcraft aerodynamics design problems.

  • PDF

Design of Highly Skewed Propeller considering the Blade Strength (강도를 고려한 고스큐 프로펠러 날개의 형상 설계)

  • Song, In-Haeng;Nho, In-Sik;Lee, Tae-Goo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.4
    • /
    • pp.411-416
    • /
    • 2008
  • A strength problem of propeller blades for large container ships at astern condition has been occasionally reported due to the application of a highly skewed propeller which can reduce the hull surface fluctuation forces. A finite element analysis code for propeller blade was developed and utilized since 1985. Recently, however, further fine mesh modeling for finite element analysis is required to yield higher accuracy in the analysis. The present study shows an application of FE analysis code to the highly skewed propeller for large container ships. Results of FE analysis show that the number of FE mesh affects largely on strength, and also the calculated strength with fine mesh gives good agreements to those of other FEM codes. A method to enlarge strength near the trailing edge was introduced considering the strength criterion on the blade.

Mesh selectivity of gill nets for silver promfret, Pampus argenteus (병어(Pampus argenteus) 자망의 망목선택성)

  • Chang, Ho-Young;Cho, Bong-Kon;Park, Jong-Soo;Lee, Wang-Lae
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.43 no.3
    • /
    • pp.169-175
    • /
    • 2007
  • To examine the mesh selectivity and optimum mesh size of gill nets for silver promfret Pampus argenteus, the field experiments were carried out during June 27th to July 3rd, 2005 at the coastal area of Imja island. The experimental gill nets for silver promfret were used in two set, which one set was consisted of 12 sheets, and each set was connected alternatively four defferent sheets those were 141mm, 148mm, 155mm and 164mm in mesh size. The analysis of mesh selectivity curve was done by Kitahara's method. The total number of fishes caught by experimental fishing of gill nets for silver promfret was 1,409, and it was consisted of 1,022 silver promfrets(72.5%), 123 croakers(8.7%), 70 red tongue soles(5.0%), 67 blue crabs(4.8%), 22 red seabreams(1.6%), and 105 other fishes(7.4%). The number of fishes caught by the mesh size was 244 at mesh 141mm(mean 6.8/sheet), 261 at mesh 148mm(mean 7.3/sheet), 295 at mesh 155mm(mean 8.2/sheet) and 222 at mesh 164mm(mean 6.2/sheet). The body weight of fishes caught by the mesh size was 102.1kg at mesh 141mm(mean 2.8kg/sheet), 112.9kg at mesh 148mm(mean 3.1kg/sheet), 132.8kg at mesh 155mm(mean 3.7kg/sheet), and 100.4kg at mesh 164mm(mean 2.8kg/sheet). The value of maximum l/m on mesh selectivity curve and the value of l/m on the selection range of 50% was estimated at 1.91 and from 1.63 to 2.23, respectively. Therefore, the optimum mesh size of gill nets for silver promfret was estimated 135mm, and the total length at the selection range of 50% was from 220mm to 301mm. But, it will be useful to use the mesh size of gill nets which is about 10-15% larger than the estimated optimum mesh size of gill nets considering the number of fishes caught, body length and body weight etc.

Automatic Quadrilateral Mesh Generation Using Updated Paving Technique in Various Two Dimensional Objects (다양한 2차원 영역에서의 향상된 Paving법을 이용한 자동 사각 요소 생성)

  • Yang, Hyun-Ik;Kim, Myung-Han
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.10
    • /
    • pp.1762-1771
    • /
    • 2003
  • In part of mechanical design analysis, quadrilateral mesh is usually used because it provides less approximate errors than triangular mesh. Over the decades, Paving method has been considered as the most robust method among existing automatic quadrilateral element mesh generation methods. However, it also has some problems such as unpredictable node projection and relatively large element generation. In this study, the aforementioned problems are corrected by updating the Paving method. In so doing, a part of node projection process is modified by classifying nodes based on the interior angles. The closure check process is also modified by adding more nodes while generating elements. The result shows well shaped element distribution in the final mesh without any aforementioned problems.

Security Framework for Hybrid Wireless Mesh Protocol in Wireless Mesh Networks

  • Avula, Mallikarjun;Lee, Sang-Gon;Yoo, Seong-Moo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.6
    • /
    • pp.1982-2004
    • /
    • 2014
  • Wireless Mesh Networks (WMNs) are emerging as promising, convenient next generation wireless network technology. There is a great need for a secure framework for routing in WMNs and several research studies have proposed secure versions of the default routing protocol of WMNs. In this paper, we propose a security framework for Hybrid Wireless Mesh Protocol (HWMP) in WMNs. Contrary to existing schemes, our proposed framework ensures both end-to-end and point-to-point authentication and integrity to both mutable and non-mutable fields of routing frames by adding message extension fields to the HWMP path selection frame elements. Security analysis and simulation results show that the proposed approach performs significantly well in spite of the cryptographic computations involved in routing.

Fast 3D Mesh Compression Using Shared Vertex Analysis

  • Jang, Euee-Seon;Lee, Seung-Wook;Koo, Bon-Ki;Kim, Dai-Yong;Son, Kyoung-Soo
    • ETRI Journal
    • /
    • v.32 no.1
    • /
    • pp.163-165
    • /
    • 2010
  • A trend in 3D mesh compression is codec design with low computational complexity which preserves the input vertex and face order. However, this added information increases the complexity. We present a fast 3D mesh compression method that compresses the redundant shared vertex information between neighboring faces using simple first-order differential coding followed by fast entropy coding with a fixed length prefix. Our algorithm is feasible for low complexity designs and maintains the order, which is now part of the MPEG-4 scalable complexity 3D mesh compression standard. The proposed algorithm is 30 times faster than MPEG-4 3D mesh coding extension.

A New Remeshing Technique of Tetrahedral Elements by Redistribution of Nodes in Subdomains and its Application to the Finite Element Analysis (영역별 절점 재분포를 통한 사면체 격자 재구성 방법 및 유한요소해석에의 적용)

  • Hong J.T.;Lee S.R.;Yang D.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.607-610
    • /
    • 2005
  • A remeshing algorithm using tetrahedral elements has been developed, which is adapted to the mesh density map constructed by a posteriori error estimation. In the finite element analyses of metal forging processes, numerical error increases as deformation proceeds due to severe distortion of elements. In order to reduce the numerical error, the desired mesh sizes in each region of the workpiece are calculated by a posteriori error estimation and the density map is constructed. Piecewise density functions are then constructed with the radial basis function in order to interpolate the discrete data of the density map. The sample mesh is constructed based on the point insertion technique which is adapted to the density function and the mesh size is controlled by moving and deleting nodes to obtain optimal distribution according to the mesh density function and the quality optimization function as well. After finishing the redistribution process of nodes, a tetrahedral mesh is constructed with the redistributed nodes, which is adapted to the density map and resulting in good mesh quality. A goodness and adaptability of the constructed mesh is verified with a testing measure. The proposed remeshing technique is applied to the finite element analyses of forging processes.

  • PDF

Advanced Design Environmental With Adaptive And Knowledge-Based Finite Elements

  • Haghighi, Kamyar;Jang, Eun
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.1222-1229
    • /
    • 1993
  • An advanced design environment , which is based on adaptive and knowledge -based finite elements (INTELMESH), has been developed. Unlike other approaches, INTEMMESH incorporates the information about the object geometry as well as the boundary and loading conditions to generate an ${\alpha}$-priori finite element mesh which is more refined around the critical regions of the problem domain. INTEMMESH is designed for planar domains and axisymmetric 3-D structures of elasticity and heat transfer subjected to mechanical and thermal loading . It intelligently identifies the critical regions/points in the problem domain and utilize the new concepts of substructuring and wave propagation to choose the proper mesh size for them. INTEMMESH generates well-shaped triangular elements by applying trangulartion and Laplacian smoothing procedures. The adaptive analysis involves the intial finite elements analyze and an efficient ${\alpha}$-posteriori error analysis involves the initial finite element anal sis and an efficient ${\alpha}$-posteriori error analysis and estimation . Once a problem is defined , the system automatically builds a finite element model and analyzes the problem though automatic iterative process until the error reaches a desired level. It has been shown that the proposed approach which initiates the process with an ${\alpha}$-priori, and near optimum mesh of the object , converges to the desired accuracy in less time and at less cost. Such an advanced design/analysis environment will provide the capability for rapid product development and reducing the design cycle time and cost.

  • PDF