• 제목/요약/키워드: Mesenchymal stem cells (MSCs)

검색결과 260건 처리시간 0.019초

A method of isolation and characterization of canine endometrial-derived mesenchymal stem cells

  • Mi Kyung Park;Kun Ho Song
    • 한국동물위생학회지
    • /
    • 제46권2호
    • /
    • pp.157-160
    • /
    • 2023
  • Endometrial tissue is a known source of mesenchymal stem cells (MSCs). We isolated canine endometrial stem cells from canine endometrial tissues using an enzymatic method and confirmed the immunophenotype of mesenchymal stem cells and multilineage differentiation. Canine endometrial tissues were obtained from canine ovariohysterectomy surgery and isolated using 0.2% collagenase type I. We measured the immunophenotype of stem cells using flow cytometry. To confirm the differentiation ability, a trilineage differentiation assay was conducted. In this study, canine endometrialderived MSCs (cEM-MSCs) were isolated by enzyme treatment and showed a spindle-shaped morphology under a microscope. Moreover, cEM-MSCs showed a trilineage differentiation ability. In this study, the canine endometrium was a good source of MSCs.

Evaluating the effect of conditioned medium from mesenchymal stem cells on differentiation of rat spermatogonial stem cells

  • Hoda Fazaeli;Mohsen Sheykhhasan;Naser Kalhor;Faezeh Davoodi Asl;Mojdeh Hosseinpoor Kashani;Azar Sheikholeslami
    • Anatomy and Cell Biology
    • /
    • 제56권4호
    • /
    • pp.508-517
    • /
    • 2023
  • In cancer patients, chemo/radio therapy may cause infertility by damaging the spermatogenesis affecting the self-renewal and differentiation of spermatogonial stem cells (SSCs). In vitro differentiation of stem cells especially mesenchymal stem cells (MSCs) into germ cells has recently been proposed as a new strategy for infertility treatment. The aim of this study was to evaluate the proliferation and differentiation of SSCs using their co-culture with Sertoli cells and conditioned medium (CM) from adipose tissue-derived MSCs (AD-MSCs). Testicular tissues were separated from 2-7 days old neonate Wistar Rats and after mechanical and enzymatic digestion, the SSCs and Sertoli cells were isolated and cultured in Dulbecco's modified eagle medium with 10% fetal bovine serum, 1X antibiotic, basic fibroblast growth factor, and glial cell line-derived neurotrophic factor. The cells were treated with the CM from AD-MSCs for 12 days and then the expression level of differentiation-related genes were measured. Also, the expression level of two major spermatogenic markers of DAZL and DDX4 was calculated. Scp3, Dazl, and Prm1 were significantly increased after treatment compared to the control group, whereas no significant difference was observed in Stra8 expression. The immunocytochemistry images showed that DAZL and DDX4 were positive in experimental group comparing with control. Also, western blotting revealed that both DAZL and DDX4 had higher expression in the treated group than the control group, however, no significant difference was observed. In this study, we concluded that the CM obtained from AD-MSCs can be considered as a suitable biological material to induce the differentiation in SSCs.

Comparative characteristic study from bone marrow-derived mesenchymal stem cells

  • Purwaningrum, Medania;Jamilah, Nabila Syarifah;Purbantoro, Steven Dwi;Sawangmake, Chenphop;Nantavisai, Sirirat
    • Journal of Veterinary Science
    • /
    • 제22권6호
    • /
    • pp.74.1-74.13
    • /
    • 2021
  • Tissue engineering has been extensively investigated and proffered to be a potential platform for novel tissue regeneration. The utilization of mesenchymal stem cells (MSCs) from various sources has been widely explored and compared. In this regard, MSCs derived from bone marrow have been proposed and described as a promising cell resource due to their high yield of isolated cells with colony-forming potential, self-renewal capacity, MSC surface marker expression, and multi-lineage differentiation capacities in vitro. However, there is evidence for bone marrow MSCs (BM-MSCs) both in vitro and in vivo from different species presenting identical and distinct potential stemness characteristics. In this review, the fundamental knowledge of the growth kinetics and stemness properties of BM-MSCs in different animal species and humans are compared and summarized. Finally, to provide a full perspective, this review will procure results of current information studies focusing on the use of BM-MSCs in clinical practice.

Isolation of Mesenchymal Stem-like Cells from a Pituitary Adenoma Specimen

  • Shim, Jin-Kyoung;Kang, Seok-Gu;Lee, Ji-Hyun;Chang, Jong Hee;Hong, Yong-Kil
    • 대한의생명과학회지
    • /
    • 제19권4호
    • /
    • pp.295-302
    • /
    • 2013
  • Some of the pituitary adenomas are invasive and spread into neighboring tissues. In previous studies, the invasion of pituitary adenomas is thought to be associated with epithelial-mesenchymal transition (EMT). In addition to that, we thought that mesenchymal stem cells (MSCs) exist in relevant microenvironment in pituitary adenoma. However, it has been little known about the existence of MSCs from pituitary adenoma. So we investigated whether mesenchymal stem-like cells (MSLCs) can be isolated from the pituitary adenoma specimen. We isolated and cultured candidate MSLCs from the fresh pituitary adenoma specimen with the same protocols used in culturing bone marrow derived MSCs (BM-MSCs). The cultured candidate MSLCs were analyzed by fluorescence-activated cell sorting (FACS) for surface markers associated with MSCs. Candidate MSLCs were exposed to mesenchymal differentiation conditions to determine the mesenchymal differentiation potential of these cells. To evaluate the tumorigenesis of candidate MSLCs from pituitary adenoma, we implanted these cells into the brain of athymic nude mice. We isolated cells resembling BM-MSCs named pituitary adenoma stroma mesenchymal stem-like cells (PAS-MSLCs). PAS-MSLCs were spindle shaped and had adherent characteristics. FACS analysis identified that the PAS-MSLCs had a bit similar surface markers to BM-MSCs. Isolated cells expressed surface antigen, positive for CD105, CD75, and negative for CD45, NG2, and CD90. We found that these cells were capable of differentiation into adipocytes, osteocytes and chondrocytes. Tumor was not developed in the nude mice brains that were implanted with the PAS-MSLCs. In this study, we showed that MSLCs can be isolated from a pituitary adenoma specimen which is not tumorigenic.

The potential of mesenchymal stem cells derived from amniotic membrane and amniotic fluid for neuronal regenerative therapy

  • Kim, Eun Young;Lee, Kyung-Bon;Kim, Min Kyu
    • BMB Reports
    • /
    • 제47권3호
    • /
    • pp.135-140
    • /
    • 2014
  • The mesenchymal stem cells (MSCs), which are derived from the mesoderm, are considered as a readily available source for tissue engineering. They have multipotent differentiation capacity and can be differentiated into various cell types. Many studies have demonstrated that the MSCs identified from amniotic membrane (AM-MSCs) and amniotic fluid (AF-MSCs) are shows advantages for many reasons, including the possibility of noninvasive isolation, multipotency, self-renewal, low immunogenicity, anti-inflammatory and nontumorigenicity properties, and minimal ethical problem. The AF-MSCs and AM-MSCs may be appropriate sources of mesenchymal stem cells for regenerative medicine, as an alternative to embryonic stem cells (ESCs). Recently, regenerative treatments such as tissue engineering and cell transplantation have shown potential in clinical applications for degenerative diseases. Therefore, amnion and MSCs derived from amnion can be applied to cell therapy in neuro-degeneration diseases. In this review, we will describe the potential of AM-MSCs and AF-MSCs, with particular focus on cures for neuronal degenerative diseases.

Usage of Human Mesenchymal Stem Cells in Cell-based Therapy: Advantages and Disadvantages

  • Kim, Hee Jung;Park, Jeong-Soo
    • 한국발생생물학회지:발생과생식
    • /
    • 제21권1호
    • /
    • pp.1-10
    • /
    • 2017
  • The use of human mesenchymal stem cells (hMSCs) in cell-based therapy has attracted extensive interest in the field of regenerative medicine, and it shows applications to numerous incurable diseases. hMSCs show several superior properties for therapeutic use compared to other types of stem cells. Different cell types are discussed in terms of their advantages and disadvantages, with focus on the characteristics of hMSCs. hMSCs can proliferate readily and produce differentiated cells that can substitute for the targeted affected tissue. To maximize the therapeutic effects of hMSCs, a substantial number of these cells are essential, requiring extensive ex vivo cell expansion. However, hMSCs have a limited lifespan in an in vitro culture condition. The senescence of hMSCs is a double-edged sword from the viewpoint of clinical applications. Although their limited cell proliferation potency protects them from malignant transformation after transplantation, senescence can alter various cell functions including proliferation, differentiation, and migration, that are essential for their therapeutic efficacy. Numerous trials to overcome the limited lifespan of mesenchymal stem cells are discussed.

제대혈 내피기원세포 및 간엽줄기세포의 분화에 대한 연구 (ENDOTHELIAL PROGENITOR CELLS AND MESENCHYMAL STEM CELLS FROM HUMAN CORD BLOOD)

  • 김은석;김현옥
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제31권1호
    • /
    • pp.39-45
    • /
    • 2005
  • Stem cell therapy using mesenchymal stem cells(MSCs) transplantation have been paid attention because of their powerful proliferation and pluripotent differentiating ability. Although umbilical cord blood (UCB) is well known to be a rich source of hematopoietic stem cells with practical and ethical advantages, the presence of mesenchymal stem cells (MSCs) in UCB has been controversial and it remains to be validated. In this study, we examine the presence of MSCs in UCB harvests and the prevalence of them is compared to that of endothelial progenitor cells. For this, CD34+ and CD34- cells were isolated and cultured under the endothelial cell growth medium and mesenchymal stem cell growth medium respectively. The present study showed that ESC-like cells could be isolated and expanded from preterm UCBs but were not acquired efficiently from full-terms. They expressed CD14-, CD34-, CD45-, CD29+, CD44+, CD105+ cell surface marker and could differentiate into adipogenic and osteogenic lineages. Our results suggest that MSCs are fewer in full-term UCB compared to endothelial progenitor cells.

Mesenchymal stem cells for restoration of ovarian function

  • Yoon, Sook Young
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제46권1호
    • /
    • pp.1-7
    • /
    • 2019
  • With the progress of regenerative medicine, mesenchymal stem cells (MSCs) have received attention as a way to restore ovarian function. It has been reported that MSCs derived from bone marrow, adipose, umbilical cord blood, menstrual blood, and amniotic fluid improved ovarian function. In light of previous studies and advances in this field, there are increased expectations regarding the utilization of MSCs to restore ovarian function. This review summarizes recent research into potential applications of MSCs in women with infertility or primary ovarian insufficiency, including cases where these conditions are induced by anticancer therapy.

Global Proteomic Analysis of Mesenchymal Stem Cells Derived from Human Embryonic Stem Cells via Connective Tissue Growth Factor Treatment under Chemically Defined Feeder-Free Culture Conditions

  • Seo, Ji-Hye;Jeon, Young-Joo
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권1호
    • /
    • pp.126-140
    • /
    • 2022
  • Stem cells can be applied usefully in basic research and clinical field due to their differentiation and self-renewal capacity. The aim of this study was to establish an effective novel therapeutic cellular source and create its molecular expression profile map to elucidate the possible therapeutic mechanism and signaling pathway. We successfully obtained a mesenchymal stem cell population from human embryonic stem cells (hESCs) cultured on chemically defined feeder-free conditions and treated with connective tissue growth factor (CTGF) and performed the expressive proteomic approach to elucidate the molecular basis. We further selected 12 differentially expressed proteins in CTGF-induced hESC-derived mesenchymal stem cells (C-hESC-MSCs), which were found to be involved in the metabolic process, immune response, cell signaling, and cell proliferation, as compared to bone marrow derived-MSCs(BM-MSCs). Moreover, these up-regulated proteins were potentially related to the Wnt/β-catenin pathway. These results suggest that C-hESC-MSCs are a highly proliferative cell population, which can interact with the Wnt/β-catenin signaling pathway; thus, due to the upregulated cell survival ability or downregulated apoptosis effects of C-hESC-MSCs, these can be used as an unlimited cellular source in the cell therapy field for a higher therapeutic potential. Overall, the study provided valuable insights into the molecular functioning of hESC derivatives as a valuable cellular source.

Applications of Bioinspired Platforms for Enhancing Immunomodulatory Function of Mesenchymal Stromal Cells

  • Ok-Hyeon Kim;Tae Jin Jeon;Young In So;Yong Kyoo Shin;Hyun Jung Lee
    • International Journal of Stem Cells
    • /
    • 제16권3호
    • /
    • pp.251-259
    • /
    • 2023
  • Mesenchymal stromal cells (MSCs) have attracted scientific and medical interest due to their self-renewing properties, pluripotency, and paracrine function. However, one of the main limitations to the clinical application of MSCs is their loss of efficacy after transplantation in vivo. Various bioengineering technologies to provide stem cell niche-like conditions have the potential to overcome this limitation. Here, focusing on the stem cell niche microenvironment, studies to maximize the immunomodulatory potential of MSCs by controlling biomechanical stimuli, including shear stress, hydrostatic pressure, stretch, and biophysical cues, such as extracellular matrix mimetic substrates, are discussed. The application of biomechanical forces or biophysical cues to the stem cell microenvironment will be beneficial for enhancing the immunomodulatory function of MSCs during cultivation and overcoming the current limitations of MSC therapy.