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Introduction

Spermatogenesis is a biological process essential for the 

male germline’s continuity by which haploid spermatozoa 
are produced. Throughout the male’s life, spermatogenesis 
is a continuous and coordinated process of cell prolifera-
tion and differentiation that results in the development of 
unrestricted numbers of spermatozoa [1]. Spermatogonial 
stem cells (SSCs), which have the remarkable ability to self-
renew and produce differentiated daughter cells that will 
eventually form spermatozoa, are at the heart of this scheme 
[2]. In seminiferous tubules, SSCs are rare stem cells found 
in a niche surrounded by Sertoli cells and differentiating 
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Abstract: In cancer patients, chemo/radio therapy may cause infertility by damaging the spermatogenesis affecting the self-
renewal and differentiation of spermatogonial stem cells (SSCs). In vitro differentiation of stem cells especially mesenchymal 
stem cells (MSCs) into germ cells has recently been proposed as a new strategy for infertility treatment. The aim of this study 
was to evaluate the proliferation and differentiation of SSCs using their co-culture with Sertoli cells and conditioned medium 
(CM) from adipose tissue-derived MSCs (AD-MSCs). Testicular tissues were separated from 2–7 days old neonate Wistar 
Rats and after mechanical and enzymatic digestion, the SSCs and Sertoli cells were isolated and cultured in Dulbecco’s 
modified eagle medium with 10% fetal bovine serum, 1X antibiotic, basic fibroblast growth factor, and glial cell line-
derived neurotrophic factor. The cells were treated with the CM from AD-MSCs for 12 days and then the expression level 
of differentiation-related genes were measured. Also, the expression level of two major spermatogenic markers of DAZL and 
DDX4 was calculated. Scp3, Dazl, and Prm1 were significantly increased after treatment compared to the control group, 
whereas no significant difference was observed in Stra8 expression. The immunocytochemistry images showed that DAZL 
and DDX4 were positive in experimental group comparing with control. Also, western blotting revealed that both DAZL and 
DDX4 had higher expression in the treated group than the control group, however, no significant difference was observed. In 
this study, we concluded that the CM obtained from AD-MSCs can be considered as a suitable biological material to induce 
the differentiation in SSCs.
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spermatogonia [3, 4]. Although different kinds of testicular 
cells are involved in the creation of SSCs’ niche, Sertoli cells 
are specialized components for SSCs regulation [5]. Sertoli 
cells associate closely with spermatogonia type A and se-
crete a variety of growth factors and cytokines that create 
an ideal microenvironment for SSCs [6]. In cancer patients, 
chemotherapy or radiotherapy may affect the process of self-
renewal and differentiation of SSCs which may cause infer-
tility by damaging the sperm production [7, 8]. Preservation 
of SSCs and saving them from damage in order to transplant 
in future, can be considered as a practical strategy to the 
treatment of germ cell-based male infertility [9-11]. So, dif-
ferent strategies such as using supportive cells or paracrine 
factors may be helpful in maintenance and differentiation of 
SSCs [12, 13]. The use of mesenchymal stem cells (MSCs) in 
regenerative medicine is gaining popularity since they face 
to no ethical problems of embryonic stem cells and can be 
collected from a variety of sources such as adipose tissue, 
bone marrow, and menstrual blood which all have a strong 
ability to develop into various cells and tissues [12]. MSCs 
have been demonstrated to release immunomodulating, anti-
inflammatory, proliferative, and anti-apoptotic cytokines 
and growth factors, which are all packaged in extracellular 
vesicles (EVs). The adipose tissue-derived mesenchymal stem 
cells (AD-MSCs), as almost easy access and well character-
ized source of MSCs, have been widely employed for thera-
peutic purposes [12]. The most remarkable characteristics 
of AD-MSCs are high level of growth factors and cytokines 
secretion, high proliferation potential, and strong immu-
nomodulatory effects [12]. Various studies have shown that 
conditioned medium (CM) derived from mesenchymal 
stem cells (MSCs-CM) contain the EVs which carry several 
proteins, such as chemokines, cytokines, and growth fac-
tors, lipids and nucleic acids which have potential to induce 
tissue regeneration or cell differentiation [13-16]. Regarding 
the beneficial effects of MSCs in regenerative medicine, and 
given that using CM could reduce some worries of using cells 
such as probability of tumorigenic effects, our experiment 
was designed. The aim of this study was to evaluate the pro-
liferation and differentiation of rat SSCs in co-culture with 
Sertoli cells and using CM from AD-MSCs.

Materials and Methods

Experimental protocol
This experimental study was established on SSCs derived 

from testis tissue samples of neonatal rats purchased from 
Qom University of medical science. Moreover MSCs were 
isolated from adipose tissues which were obtained during li-
posuction surgery after obtaining written informed consent 
from volunteers. Ethical code was obtained from Research 
Ethics Committee of Mashhad Academic Center of Educa-
tion, Culture and Research (IR.ACECR.JDM.REC.1397.012).

Isolation of SSCs and Sertoli cells from testicular tissue
First, testicular tissues were separated from 2–7 days old 

male rats and washed three times with phosphate-buffered 
saline (PBS). Then, mechanical digestion of the testicular 
tissue samples was done by insulin needles. After that, for 
enzymatic digestion, collagenase I was added for 15 minutes 
at 37°C. The resulting solution was centrifuged for 10 min-
utes at 1,800 rpm and the supernatant was removed. Then, 
it was exposed to trypsin-EDTA 0.25% for 15 minutes and 
centrifuged at 1,800 rpm for 10 minutes again. The superna-
tant was removed and the precipitate obtained from centrifu-
gation was cultured in Dulbecco’s modified eagle medium 
(DMEM)/low glucose medium (Gibco) containing 10% fetal 
bovine serum (FBS; Gibco) and 1% penicillin/streptomycin 
(Gibco), supplemented with 40 ng/ml glial cell line-derived 
neurotrophic factor (GDNF, RC215-13; Biobasic) and 20 ng/ml 
basic fibroblast growth factor (bFGF, RC218-25; Biobasic). The 
ambient temperature for cultivating these cells was considered 
to be 34°C.

Characterization of SSCs and Sertoli cells by real-time 
polymerase chain reaction

In order to investigate the nature of SSCs and Sertoli 
cells, the expression level of some specific genes such as c-
Kit, integrin-β1, integrin-α6, Nanog were evaluated by real-
time polymerase chain reaction (PCR). Total RNA was 
extracted using the RNeasy kit (Gene All Biotechnology), 
and its amount was determined using Nanodrop 2000 spec-
trophotometer (Thermo Fisher Scientific) at 260/280 nm. 
The reverse transcription was used to synthesize the first-
strand cDNA using transcription Kit (Cinagen). The real-
time PCR assay was carried out using RealQ Plus Master Mix 
Green (AMPLIQONIII), according to the manufacturer’s 
instructions. The mixture comprised 10 μl of SYBR Green 
Master Mix, 1 μl of cDNA (equivalent to 1 ng of total RNA 
with an initial concentration of 500 ng/μl), 0.5 μl of PCR for-
ward primer, and 0.5 μl of PCR reverse primer in a volume of 
5 pmol/μl. Millipore water was also added to achieve a final 
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volume of 20 μl. The primers for each gene were designed with 
OLIGO7 primer analysis software (Table 1). The experiments 
were carried out in triplicate for the quantification of all target 
genes. For normalizing gene expression levels, the GAPDH 
gene was used as an internal reference. The 2–ΔΔCt method was 
used to calculate the fold change of mRNA expressions for 
target genes. To characterization of SSCs and Sertoli cells by 
Immunocytochemistry to verify the co-culture of SSCs and 
Sertoli cells obtained from rats at the protein level, SSCs and 
Sertoli cells at passages 3–5 were cultured in 24-well plates. 
The cells were fixed with 4% paraformaldehyde (Sigma) for 
10 minutes and washed with 0.4% Triton X-100 (Sigma) at 
room temperature. Cells were then blocked with blocking 
solution (10% goat serum; Sigma) for 30 minutes and incu-
bated overnight at 4°C with anti-vimentin antibody (BioLe-
gend) for Sertoli cells and anti-CD49f antibody (BioLegend) 
for SSCs. Then, for nucleus staining, they were exposed to 
4’,6-diamidino-2-phenylindole (DAPI) for 1−2 minutes, then 
washed three times with PBS/Tween-20 (PBST) and observed 
using an inverted fluorescence microscope (Olympus IX71).

Isolation and characterization of AD-MSCs
Adipose tissue samples were obtained from liposuction 

operation with written consent from patients and trans-
ferred from the hospital to the laboratory in physiological 
serum. The samples were washed several times with PBS and 
divided into smaller pieces. After mechanical digestion, col-
lagenase I was added and incubated for 45 minutes at 37°C. 
Then, it was centrifuged for 10 minutes at 1,800 rpm and the 
supernatant was removed. The resulting cell sediment was 

cultivated in DMEM culture medium containing 10% FBS 
and 1% penicillin/streptomycin antibiotics and incubated 
in 37°C and 5% CO2. To characterize the MSCs, their triple 
differentiation ability into 3 categories of bone, cartilage, 
and adipose was investigated under appropriate culture 
conditions. Then, real-time PCR was used to quantitatively 
measure the expression level of adipose-related gene (PPARγ), 
osteocyte-related gene (alkaline phosphatase), and chondro-
cyte-related gene (type II collagen). So, after trypsinizing the 
cells, total RNA was extracted (Gene All Biotechnology), the 
cDNA was made, and SYBR Green master mix was used to 
determine the expression value of the genes. The Sequences 
of primers are shown in Table 1.

Preparation of the CM
When the cells reached 70% confluence in the third pas-

sage, and 48 hours after culture media replacement, all the 
media was collected and passed through 0.22 filter. For next 
experiments, CM was saved in –70°C.

Treatment of SSCs with CM
In experimental group, when the culture dish of SSCs and 

Sertoli cells reached 70% confluence, the culture medium 
was replaced with the CM obtained from AD-MSCs and 
the cells were incubated in 34°C and 5% CO2 for 12 days. In 
control group, SSCs and Sertoli cells received no treatment 
except DMEM with 10% FBS and 1X pen/strep. For better 
maintaining SSCs, GDNF (40 ng/ml) and FGF (20 ng/ml) 
were added to both experimental and control groups for whole 
12 days. After 12 days, further analyses were performed to in-

Table 1. Sequence of real-time polymerase chain reaction primers

Gene name
Primer sequence

Forward primer (5’-3’) Reverse primer (5’-3’)
ALPL GAA GTC CGT GGG CAT CGT CAG TGC GGT TCC AGA CAT AG
COL2A1 AAA GAC GGT GAG ACG GGA GC GAC CAT CAG TAC CAG GAG TGC C
PPARγ TGC CTA TGA GCA CTT CAC TGA TCG CAC TTT GGT ATT
ITGA6 GCCAGTTGTGCTTGCTCTA AGCGAGAAGCCGAAGAGG
ITGB1 TGCCAACCAAGTGACATAGAG TCAATAGGGTAGTCTTCAGCC
c-Kit GGCATCACCATCAAAAACG GAGATGACTTGTTTCGGGC
Nanog TCACACGGGCAAATACACG CCAGGAAAAGTACGGCAGG
Stra8 CCTCTCTTCTTACTCTGCGA ATCATCTCTGGGTTGGTTGC
Dazl ACAACTTCTGAGGCTCCAAA CTGGCAAAGAAACTCCTGAT
Scp3 TAGGCTTCGTCAGATGCTTC CACCAGGCACCATCTTTAGA
Prm1 CAGCAAAAGCAGGAGCAGA TAAAGGTGTATGAGCGGCG
GAPDH AACCCATCACCATCTTCCAG GTGAAGACGCCAGTAGACT

ALPL, alkaline phosphatase; COL2A1, type II collagen; ITGA6, integrin-α6; ITGB1, integrin-β1.
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vestigate SSCs differentiation level.

Real-time RT-PCR for germ-like specific genes 
expression

After trypsinizing the cells, total RNA was extracted us-
ing RNeasy kit (Gene All Biotechnology) and the cDNA was 
made. The expression level of Stra8, Dazl, Scp3, and Prm1 
as germ-like specific genes was measured using RealQ Plus 
Master Mix Green as explained thoroughly before. The se-
quences of primers are shown in Table 1.

Immunocytochemistry for markers associated with 
male germ cells

After 12 days, the cells were fixed with 4% formalin for 
10 minutes and permeabilized with 0.4% Triton X-100 for 
10 minutes. Cells were then blocked with blocking solution 
for 30 minutes and incubated with anti-DAZL (orb156544, 
biorbyt), and anti-DDX4 (PA1963, bosterbio) overnight. The 
cells were washed with PBST and incubated with anti-Rabbit 
IgG FITC conjugated (AFIRAN, 1:500) dissolved in 5% BSA 
in dark (30 minutes at RT). The cells were washed with PBST 
and stained with DAPI for 1–2 minutes, followed by three 
times washing with PBST and observed using inverted fluo-
rescence microscope (Olympus IX71).

Western blot for markers associated with male germ 
cells

After 12 days, the cells were trypsinized and lysed with 
lysis buffer. Total protein was extracted and the sample was 
run on polyacrylamide gel electrophoresis for 2–3 hours at 
100 W. The obtained gel was used to transfer the protein to 
a poly vinylidene fluoride (PVDF) membrane. Then, mem-
brane was incubated for 1–2 hours in room temperature with 
primary antibodies of anti-DAZL (orb156544, biorbyt) and 
anti-DDX4 (PA1963, bosterbio). The horseradish peroxidase 
(HRP)-conjugated Streptavidin-HRP conjugate (Abcam, 
1:500) was added following the washing phase, incubated 
for 1–2 hours in diaminobenzidine (DAB) solution, and the 
DAB reagent was then removed. When the band was visible, 
the membrane was washed and analyzed.

Statistical analysis
Using t-test and U-Mann–Whitney, Fisher’s chi-square, 

analysis of variance and follow-up tests, the results are ana-
lyzed.

Results

Characterization of SSCs and Sertoli cells
24 hours after isolation and cultivation, SSCs and Sertoli 

cells were attached to the bottom of the dish with numerous 
tiny colonies of almost round-shaped SSCs and fibroblast-
like, spindle-shaped Sertoli cells which gradually increased 
during two weeks of culture (Fig. 1).

To better characterize the co-culture of SSCs and Sertoli 
cells, the expression level of some germ cell genes was investi-
gated by real-time PCR. The results showed that integrin-α6, 
c-Kit, integrin-β1, and Nanog were clearly expressed in SSCs 
(Fig. 2).

Also, to confirm the co-culture of SSCs and Sertoli cells, 
we examined the expression of CD49f and vimentin markers 
for SSCs and Sertoli cells, respectively. The results of immu-
nocytochemistry (ICC) showed that CD49f was expressed in 
SSCs, while vimentin expression was observed in Sertoli cells 
(Fig. 3A, B).

Characterization of the isolated AD-MSCs
To confirm multipotent adipose-derived stem cells, the 

triple differentiation ability of adipose-derived stem cells into 
3 types of bone and cartilage fat was detected. The relative 
mRNA level of alkaline phosphatase was significantly higher 
(P<0.05; ANOVA) in AD-MSCs differentiated into the bone 
lineage than in control AD-MSCs (Fig. 4A). Also, relative 

Fig. 1. Colonies of SSCs and Sertoli cells 72 hours after isolation. 
SSCs (arrowheads), Sertoli cells (arrows) (scale bar: 100 µm).
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expression of PPARγ and collagen type II was significantly 
higher (P<0.05; ANOVA) in AD-MSCs differentiated into 
adipocyte and chondrocyte phenotype, respectively, when 
compared with control AD-MSCs (Fig. 4B, C). In primary 
cultures, fibroblast-like and spindle-shaped AD-MSCs with 
distinct nuclei were detected by phase-contrast microscopy 
(Fig. 4D).

Evaluating germ cell-specific genes in SSCs after 
treatment

To determine the expression level of Stra8, Dazl, Scp3, and 
Prm1 in SSCs, real-time PCR was used 12 days after treat-
ment. There was no significant difference in the expression 
of pre-meiotic Stra8 gene between CM-treated group and 

the control group (P=0.074). However, the expression level 
of Dazl, Scp3, and Prm1 genes was significantly increased 
in treated group compared to the control group (P<0.0001, 
P=0.032, and P=0.003, respectively) (Fig. 5).

Immunostaining for evaluating the expression of germ 
cell markers

To investigate whether the treated group had experienced 
differentiation after 12 days, we examined the expression of 
DDX4 and DAZL as markers related to male germ cells at 
the protein level using ICC. The inverted fluorescent images 
showed that DAZL and DDX4 were expressed and detected 
clearly in treated groups rather than control group (Fig. 6).
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Western blot for evaluating the expression of germ cell 
markers

The expression of male germ cell markers of DAZL and 
DDX4 was evaluated by western blot 12 days after treatment. 
The results of western blot indicated the presence of a strong 
single band (72 kDa) in all groups, which was equal to the 
target size of DDX4 protein (Fig. 7A). Also, a strong single 
band (35 kDa) was observed in all groups, which was equal 
to the target size of DAZL protein (Fig. 7A). DAZL protein 
showed no significant difference in the treated group than 
the control group (P=0.541) (Fig. 7B). Similarly, DDX4 pro-
tein had higher expression in treated group than the control 

group after 12 days treatment, however, the difference was 
not significant (P=0.291) (Fig. 7B).

Discussion

In recent years, a few therapeutic approaches have been 
proposed to conserve fertility in pre-pubertal boys, adoles-
cents, and adult men, when chemo- and/or radiotherapy 
is required or in other causes-derived male infertility. For 
several years, the use of SSCs has been considered as a treat-
ment option in all the mentioned cases [17]. These specific 
germ cells are able to generate a constant supply of differ-
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entiated spermatogonia preserving spermatogenesis after 
the pre-pubertal onset of germ cell differentiation [18]. The 
signaling network of testis niche is responsible to provide a 
balance between self-renewal and differentiation of SSCs [19]. 
Beside, since it has been reported that anticancer therapies 
destroy this niche [9-11], transplantation of enriched SSCs 
as a practical way of preserving fertility will not be enough 
to restore fertility. So, co-transplantation of supportive cells 
or paracrine factors may be considered to optimize the 
transplantation procedure’s efficiency. Although MSCs iso-
lated from various sources, including adipose tissue, bone 
marrow, and umbilical cord, have been transplanted as an 
alternative for SSCs in a number of animal models, MSC-
derived spermatogenesis has not been documented in any 
of these investigations [16, 20, 21]. Instead, the restoration of 
endogenous spermatogenesis was noted, suggesting the sig-
nificance of the MSCs’ secreted factors in the recovery of the 
testicular niche. Furthermore, in a recent study, the potential 
of MSCs in coordinating stem cell niche restoration through 
paracrine secretions was demonstrated [22]. In this study, the 
niche of SSCs as an open microenvironment where the pro-
cesses of self-renewal and differentiation are in balance, was 
considered as an experimental model. The results showed 
that the subtonic injection of MSCs or their secretome lead 
to the recovery of spermatogenesis and the production of 
functional germ cells. The researchers concluded that MSCs 
could initiate tissue repair processes after injury by mimick-
ing the function of supporting cells in the niche through 

paracrine activity [22]. It has been previously reported that 
co-transplantation of SSCs with MSCs in mice, leads to pro-
moted fertility restoration efficiency [23]. However, since 
there is no definitive report on the long-term safety of MSCs 
yet, and due to concerns about potential tumorigenicity of 
MSC-based therapies [24], it seems that the application of 
MSC’s derivatives, like their CM, can be considered as a 
proper alternative for cells themselves.

In this study, we found that the co-culture of SSCs with 
Sertoli cells in the presence of AD-MSCs-CM, GDNF, and 
bFGF resulted in more efficient differentiation, at least at 
the gene expression level. However, based on the findings 
of western blotting assays, greater expression of DAZL and 
DDX4 proteins in the treatment group compared to the con-
trol group was revealed, although it was not statistically sig-
nificant (P=0.541 and P=0.291, respectively) (Fig. 7). Dazl is 
a master gene that controls the differentiation of germ cells, 
and Yu et al.’s [22] research suggests that its ectopic expres-
sion promotes the dynamic differentiation of mouse embry-
onic stem cells into gametes in vitro. Additionally, DAZL 
expression has been linked to the formation and differentia-
tion of embryonic germ cells, and it is a feature of vertebrate 
germ cells, according to a study by Li et al. [23]. In details, we 
showed that the mRNA expression level of DAZL and Scp3, 
as meiotic genes, in the AD-MSCs-CM treated group was 
significantly increased in comparison to the control group 
(P<0.0001, P=0.032, respectively) (Fig. 5). Similar data was 
obtained in case of Prm1 as a post-meiotic gene (P=0.003) 
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(Fig. 5). However, comparing the expression level of pre-mei-
otic Stra8 gene between AD-MSCs-CM treated and control 
groups showed no significant difference (P=0.074) (Fig. 5). 
Various studies have so far demonstrated that co-culturing 
Sertoli cells and SSCs in a media enriched with hormones 
promotes in vitro spermatogenesis [22-24]. In fact, it has 
been demonstrated that Sertoli cells and their endocrine and 
paracrine factors are crucial for maintaining SSC survival 
and differentiation in vitro [22]. In this regard, it was found 
that Sertoli cell transplantation can restore endogenous sper-
matogenesis in the irradiated rat testis whereas spermato-
genesis was discovered in the tubules means that nearby the 
tubules that contained donor sertoli cells rather than in the 
donor cells containing-tubules which sertoli cells can induce 
differentiation of SSCs [22]. Beside, previous studies show 
that testis with MSC injections can recover spermatogenesis, 
but presumably not from transplanted cells. Nevertheless, 
more tubules containing spermatogenesis were found in the 
testes received MSC injections, suggesting a potential benefit 
of MSCs to boost the recovery of endogenous spermatogen-
esis following busulfan treatment [22, 23]. These findings 
imply that MSCs may aid in reestablishing endogenous sper-
matogenesis rather than differentiating towards the germ-
line in order to improve restoring fertility. The paracrine 
substances released by MSCs may help SSC differentiation 
and restore the function of the niche. Vascular endothelial 
growth factor, hepatocyte growth factor, FGF2, angiopoietin 
(ANG) 1 and ANG2, platelet-derived growth factor (PDGF), 
transforming growth factor beta (TGF-β), and many other 
paracrine factors that promote angiogenesis are secreted by 
MSCs [25, 26]. In addition, retinoic acid (RA) and TGF-β are 
considered as the key regulators in spermatogonial differen-
tiation [27]. Our obtained results are in line with a study in 
2012 on co-culturing Sertoli cells and SSCs, in which post-
meiotic genes like TP1, TP2, and Prm1 were up-regulated [28]. 
In that study, vitamins like vitamin C, E, and RA as well as 
hormones including testosterone and follicle-stimulating 
hormone were added to the culture system in order to mimic 
the natural niche as close as possible. However, in our study, 
we used CM of MSCs to provide a microenvironment similar 
to the natural niche of SSCs and support spermatogenesis.

Through architectural support and growth factor stimu-
lation, the niche of SSCs provides the required stimuli to 
manage self-renewal and differentiation [29, 30]. GDNF and 
FGF2, involved in self-renewal, are some of these crucial 
factors [31]. Also, RA and TGF-β are considered as the key 

regulators in spermatogonial differentiation [27]. In light of 
this, it makes sense that the secretion of MSCs, such as CM 
or EVs like exosomes with the aforementioned secretory 
content, can improve the process and increase efficiency not 
only in the laboratory culture and differentiation of SSCs but 
also in designing clinical trials in order to their future trans-
plantation.
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