• Title/Summary/Keyword: Mesenchymal stem cells

Search Result 523, Processing Time 0.023 seconds

Isolation of Mesenchymal Stem-like Cells from a Pituitary Adenoma Specimen

  • Shim, Jin-Kyoung;Kang, Seok-Gu;Lee, Ji-Hyun;Chang, Jong Hee;Hong, Yong-Kil
    • Biomedical Science Letters
    • /
    • v.19 no.4
    • /
    • pp.295-302
    • /
    • 2013
  • Some of the pituitary adenomas are invasive and spread into neighboring tissues. In previous studies, the invasion of pituitary adenomas is thought to be associated with epithelial-mesenchymal transition (EMT). In addition to that, we thought that mesenchymal stem cells (MSCs) exist in relevant microenvironment in pituitary adenoma. However, it has been little known about the existence of MSCs from pituitary adenoma. So we investigated whether mesenchymal stem-like cells (MSLCs) can be isolated from the pituitary adenoma specimen. We isolated and cultured candidate MSLCs from the fresh pituitary adenoma specimen with the same protocols used in culturing bone marrow derived MSCs (BM-MSCs). The cultured candidate MSLCs were analyzed by fluorescence-activated cell sorting (FACS) for surface markers associated with MSCs. Candidate MSLCs were exposed to mesenchymal differentiation conditions to determine the mesenchymal differentiation potential of these cells. To evaluate the tumorigenesis of candidate MSLCs from pituitary adenoma, we implanted these cells into the brain of athymic nude mice. We isolated cells resembling BM-MSCs named pituitary adenoma stroma mesenchymal stem-like cells (PAS-MSLCs). PAS-MSLCs were spindle shaped and had adherent characteristics. FACS analysis identified that the PAS-MSLCs had a bit similar surface markers to BM-MSCs. Isolated cells expressed surface antigen, positive for CD105, CD75, and negative for CD45, NG2, and CD90. We found that these cells were capable of differentiation into adipocytes, osteocytes and chondrocytes. Tumor was not developed in the nude mice brains that were implanted with the PAS-MSLCs. In this study, we showed that MSLCs can be isolated from a pituitary adenoma specimen which is not tumorigenic.

Therapeutic Use of Stem Cell Transplantation for Cell Replacement or Cytoprotective Effect of Microvesicle Released from Mesenchymal Stem Cell

  • Choi, Moonhwan;Ban, Taehyun;Rhim, Taiyoun
    • Molecules and Cells
    • /
    • v.37 no.2
    • /
    • pp.133-139
    • /
    • 2014
  • Idiopathic pulmonary fibrosis (IPF) is the most common and severe type of idiopathic interstitial pneumonias (IIP), and which is currently no method was developed to restore normal structure and function. There are several reports on therapeutic effects of adult stem cell transplantations in animal models of pulmonary fibrosis. However, little is known about how mesenchymal stem cell (MSC) can repair the IPF. In this study, we try to provide the evidence to show that transplanted mesenchymal stem cells directly replace fibrosis with normal lung cells using IPF model mice. As results, transplanted MSC successfully integrated and differentiated into type II lung cell which express surfactant protein. In the other hand, we examine the therapeutic effects of microvesicle treatment, which were released from mesenchymal stem cells. Though the therapeutic effects of MV treatment is less than that of MSC treatment, MV treat-ment meaningfully reduced the symptom of IPF, such as collagen deposition and inflammation. These data suggest that stem cell transplantation may be an effective strategy for the treatment of pulmonary fibrosis via replacement and cytoprotective effect of microvesicle released from MSCs.

Development of an effective dissociation protocol for isolating mesenchymal stem cells from bovine intermuscular adipose tissues

  • Jeong Min Lee;Hyun Lee;Seung Tae Lee
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.38 no.1
    • /
    • pp.10-16
    • /
    • 2023
  • Intermuscular fat is essential for enhancing the flavor and texture of cultured meat. Mesenchymal stem cells derived from intermuscular adipose tissues are a source of intermuscular fat. Therefore, as a step towards developing a platform to derive intermuscular fat from mesenchymal stem cells (MSCs) for insertion between myofibrils in cultured beef, an advanced protocol of intermuscular adipose tissue dissociation effective to the isolation of MSCs from intermuscular adipose tissues was developed in cattle. To accomplish this, physical steps were added to the enzymatic dissociation of intermuscular adipose tissues, and the MSCs were established from primary cells dissociated with physical step-free and step-added enzymatic dissociation protocols. The application of a physical step (intensive shaking up) at 5 minutes intervals during enzymatic dissociation resulted in the greatest number of primary cells derived from intermuscular adipose tissues, showed effective formation of colony forming units-fibroblasts (CFU-Fs) from the retrieved primary cells, and generated MSCs with no increase in doubling time. Thus, this protocol will contribute to the stable supply of good quality adipose-derived mesenchymal stem cells (ADMSCs) as a fat source for the production of marbled cultured beef.

Melatonin Rescues Mesenchymal Stem Cells from Senescence Induced by the Uremic Toxin p-Cresol via Inhibiting mTOR-Dependent Autophagy

  • Yun, Seung Pil;Han, Yong-Seok;Lee, Jun Hee;Kim, Sang Min;Lee, Sang Hun
    • Biomolecules & Therapeutics
    • /
    • v.26 no.4
    • /
    • pp.389-398
    • /
    • 2018
  • p-Cresol, found at high concentrations in the serum of chronic kidney failure patients, is known to cause cell senescence and other complications in different parts of the body. p-Cresol is thought to mediate cytotoxic effects through the induction of autophagy response. However, toxic effects of p-cresol on mesenchymal stem cells have not been elucidated. Thus, we aimed to investigate whether p-cresol induces senescence of mesenchymal stem cells, and whether melatonin can ameliorate abnormal autophagy response caused by p-cresol. We found that p-cresol concentration-dependently reduced proliferation of mesenchymal stem cells. Pretreatment with melatonin prevented pro-senescence effects of p-cresol on mesenchymal stem cells. We found that by inducing phosphorylation of Akt and activating the Akt signaling pathway, melatonin enhanced catalase activity and thereby inhibited the accumulation of reactive oxygen species induced by p-cresol in mesenchymal stem cells, ultimately preventing abnormal activation of autophagy. Furthermore, preincubation with melatonin counteracted other pro-senescence changes caused by p-cresol, such as the increase in total 5'-AMP-activated protein kinase expression and decrease in the level of phosphorylated mechanistic target of rapamycin. Ultimately, we discovered that melatonin restored the expression of senescence marker protein 30, which is normally suppressed because of the induction of the autophagy pathway in chronic kidney failure patients by p-cresol. Our findings suggest that stem cell senescence in patients with chronic kidney failure could be potentially rescued by the administration of melatonin, which grants this hormone a novel therapeutic role.

Allogeneic Transplantation of Mesenchymal Stem Cells from Human Umbilical Cord Blood

  • Lee, Jae-Kwon
    • Journal of Applied Biological Chemistry
    • /
    • v.50 no.4
    • /
    • pp.187-195
    • /
    • 2007
  • The cord blood serves as a vehicle for the transportation of oxygen and nutrients to the fetus. In the past, the human cord blood has generally been discarded after birth. However, numerous studies have described the regenerative ability of the cord blood cells in various incurable diseases. The umbilical cord blood (UCB)-derived stem cells are obtained through non-invasive methods that are not harmful to both the mother and the fetus. Furthermore, the cord blood stem cells are more immature than the adult stem cells and expand readily in vitro. The mesenchymal stem cells (MSCs) have the capacity to differentiate in vitro into various mesodermal (bone, cartilage, tendon, muscle, and adipose), endodermal (hepatocyte), and ectodermal (neurons) tissues. This review describes the immunological properties of the human UCB-MSCs to assess their potential usefulness in the allogeneic transplantation for the regenerative medicine.

Global Proteomic Analysis of Mesenchymal Stem Cells Derived from Human Embryonic Stem Cells via Connective Tissue Growth Factor Treatment under Chemically Defined Feeder-Free Culture Conditions

  • Seo, Ji-Hye;Jeon, Young-Joo
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.1
    • /
    • pp.126-140
    • /
    • 2022
  • Stem cells can be applied usefully in basic research and clinical field due to their differentiation and self-renewal capacity. The aim of this study was to establish an effective novel therapeutic cellular source and create its molecular expression profile map to elucidate the possible therapeutic mechanism and signaling pathway. We successfully obtained a mesenchymal stem cell population from human embryonic stem cells (hESCs) cultured on chemically defined feeder-free conditions and treated with connective tissue growth factor (CTGF) and performed the expressive proteomic approach to elucidate the molecular basis. We further selected 12 differentially expressed proteins in CTGF-induced hESC-derived mesenchymal stem cells (C-hESC-MSCs), which were found to be involved in the metabolic process, immune response, cell signaling, and cell proliferation, as compared to bone marrow derived-MSCs(BM-MSCs). Moreover, these up-regulated proteins were potentially related to the Wnt/β-catenin pathway. These results suggest that C-hESC-MSCs are a highly proliferative cell population, which can interact with the Wnt/β-catenin signaling pathway; thus, due to the upregulated cell survival ability or downregulated apoptosis effects of C-hESC-MSCs, these can be used as an unlimited cellular source in the cell therapy field for a higher therapeutic potential. Overall, the study provided valuable insights into the molecular functioning of hESC derivatives as a valuable cellular source.

Enhanced Healing of Rat Calvarial Bone Defects with Hypoxic Conditioned Medium from Mesenchymal Stem Cells through Increased Endogenous Stem Cell Migration via Regulation of ICAM-1 Targeted-microRNA-221

  • Chang, Woochul;Kim, Ran;Park, Sang In;Jung, Yu Jin;Ham, Onju;Lee, Jihyun;Kim, Ji Hyeong;Oh, Sekyung;Lee, Min Young;Kim, Jongmin;Park, Moon-Seo;Chung, Yong-An;Hwang, Ki-Chul;Maeng, Lee-So
    • Molecules and Cells
    • /
    • v.38 no.7
    • /
    • pp.643-650
    • /
    • 2015
  • The use of conditioned medium from mesenchymal stem cells may be a feasible approach for regeneration of bone defects through secretion of various components of mesenchymal stem cells such as cytokines, chemokines, and growth factors. Mesenchymal stem cells secrete and accumulate multiple factors in conditioned medium under specific physiological conditions. In this study, we investigated whether the conditioned medium collected under hypoxic condition could effectively influence bone regeneration through enhanced migration and adhesion of endogenous mesenchymal stem cells. Cell migration and adhesion abilities were increased through overexpression of intercellular adhesion molecule-1 in hypoxic conditioned medium treated group. Intercellular adhesion molecule-1 was upregulated by microRNA-221 in mesenchymal stem cells because microRNAs are key regulators of various biological functions via gene expression. To investigate the effects in vivo, evaluation of bone regeneration by computed tomography and histological assays revealed that osteogenesis was enhanced in the hypoxic conditioned medium group relative to the other groups. These results suggest that behavioral changes of endogenous mesenchymal stem cells through microRNA-221 targeted-intercellular adhesion molecule-1 expression under hypoxic conditions may be a potential treatment for patients with bone defects.

Canine amniotic membrane derived mesenchymal stem cells exosomes addition in canine sperm freezing medium

  • Mahiddine, Feriel Yasmine;Qamar, Ahmad Yar;Kim, Min Jung
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.35 no.3
    • /
    • pp.268-272
    • /
    • 2020
  • Amniotic membrane stem cells are considered as a good alternative to embryonic stem cells, but their use in clinical studies is still not common. Here, exosomes from canine amniotic membrane mesenchymal stem cells (cAmMSC-exo) were used for dog sperm cryopreservation. Upon cryopreserved straws using cryoprotectant containing 0, 0.5, 1, or 2 ㎍/mL of cAmMSC-exo were thawed, motility and membrane integrity were analyzed. However, results showed no significant differences between the groups. We concluded that cAmMSC-exo with lower than 2 ㎍/mL have no effects on sperm cryopreservation, and further studies to get higher concentrations of cAmMSC-exo should be conducted for clinical application.