• 제목/요약/키워드: Mesenchymal Stem cells

검색결과 552건 처리시간 0.026초

Canine amniotic membrane derived mesenchymal stem cells exosomes addition in canine sperm freezing medium

  • Mahiddine, Feriel Yasmine;Qamar, Ahmad Yar;Kim, Min Jung
    • 한국동물생명공학회지
    • /
    • 제35권3호
    • /
    • pp.268-272
    • /
    • 2020
  • Amniotic membrane stem cells are considered as a good alternative to embryonic stem cells, but their use in clinical studies is still not common. Here, exosomes from canine amniotic membrane mesenchymal stem cells (cAmMSC-exo) were used for dog sperm cryopreservation. Upon cryopreserved straws using cryoprotectant containing 0, 0.5, 1, or 2 ㎍/mL of cAmMSC-exo were thawed, motility and membrane integrity were analyzed. However, results showed no significant differences between the groups. We concluded that cAmMSC-exo with lower than 2 ㎍/mL have no effects on sperm cryopreservation, and further studies to get higher concentrations of cAmMSC-exo should be conducted for clinical application.

Recent Progress on Skin-Derived Mesenchymal Stem Cells in Pigs

  • Kumar, B. Mohana;Patil, Rajreddy;Lee, Sung-Lim;Rho, Gyu-Jin
    • Reproductive and Developmental Biology
    • /
    • 제36권4호
    • /
    • pp.283-290
    • /
    • 2012
  • Skin serves as an easily accessible source of multipotent stem cells with potential for cellular therapies. In pigs, stem cells from skin tissues of fetal and adult origins have been demonstrated as either floating spheres (cell aggregates) or adherent spindle-shaped mesenchymal stem cell (MSC)-like cells depending on culture conditions. The cells isolated from the epidermis and dermis of porcine skin showed plastic adherent growth in the presence of serum and positively expressed a range of surface and intracellular markers that are considered to be specific for MSCs. The properties of primitive stem cells have been observed with the expression of alkaline phosphatase and markers related to pluripotency. Further, studies have shown the ability of skin-derived MSCs to differentiate in vitro along mesodermal, neuronal and germ-line lineages. Moreover, preclinical studies have also been performed to assess their in vivo potential, and the findings appear to be effective in tissue regeneration at the defected site after transplantation. The present review describes the recent progress on the biological features of porcine skin-derived MSCs as adherent cells, and summarizes their potential in advancing stem cell based therapies.

Usage of Human Mesenchymal Stem Cells in Cell-based Therapy: Advantages and Disadvantages

  • Kim, Hee Jung;Park, Jeong-Soo
    • 한국발생생물학회지:발생과생식
    • /
    • 제21권1호
    • /
    • pp.1-10
    • /
    • 2017
  • The use of human mesenchymal stem cells (hMSCs) in cell-based therapy has attracted extensive interest in the field of regenerative medicine, and it shows applications to numerous incurable diseases. hMSCs show several superior properties for therapeutic use compared to other types of stem cells. Different cell types are discussed in terms of their advantages and disadvantages, with focus on the characteristics of hMSCs. hMSCs can proliferate readily and produce differentiated cells that can substitute for the targeted affected tissue. To maximize the therapeutic effects of hMSCs, a substantial number of these cells are essential, requiring extensive ex vivo cell expansion. However, hMSCs have a limited lifespan in an in vitro culture condition. The senescence of hMSCs is a double-edged sword from the viewpoint of clinical applications. Although their limited cell proliferation potency protects them from malignant transformation after transplantation, senescence can alter various cell functions including proliferation, differentiation, and migration, that are essential for their therapeutic efficacy. Numerous trials to overcome the limited lifespan of mesenchymal stem cells are discussed.

Human adipose-derived mesenchymal stem cell spheroids improve recovery in a mouse model of elastase-induced emphysema

  • Cho, Ryeon Jin;Kim, You-Sun;Kim, Ji-Young;Oh, Yeon-Mok
    • BMB Reports
    • /
    • 제50권2호
    • /
    • pp.79-84
    • /
    • 2017
  • Emphysema, a pathologic component of the chronic obstructive pulmonary disease, causes irreversible destruction of lung. Many researchers have reported that mesenchymal stem cells can regenerate lung tissue after emphysema. We evaluated if spheroid human adipose-derived mesenchymal stem cells (ASCs) showed greater regenerative effects than dissociated ASCs in mice with elastase-induced emphysema. ASCs were administered via an intrapleural route. Mice injected with spheroid ASCs showed improved regeneration of lung tissues, increased expression of growth factors such as fibroblast growth factor-2 (FGF2) and hepatocyte growth factor (HGF), and a reduction in proteases with an induction of protease inhibitors when compared with mice injected with dissociated ASCs. Our findings indicate that spheroid ASCs show better regeneration of lung tissues than dissociated ACSs in mice with elastase-induced emphysema.

Applications of Bioinspired Platforms for Enhancing Immunomodulatory Function of Mesenchymal Stromal Cells

  • Ok-Hyeon Kim;Tae Jin Jeon;Young In So;Yong Kyoo Shin;Hyun Jung Lee
    • International Journal of Stem Cells
    • /
    • 제16권3호
    • /
    • pp.251-259
    • /
    • 2023
  • Mesenchymal stromal cells (MSCs) have attracted scientific and medical interest due to their self-renewing properties, pluripotency, and paracrine function. However, one of the main limitations to the clinical application of MSCs is their loss of efficacy after transplantation in vivo. Various bioengineering technologies to provide stem cell niche-like conditions have the potential to overcome this limitation. Here, focusing on the stem cell niche microenvironment, studies to maximize the immunomodulatory potential of MSCs by controlling biomechanical stimuli, including shear stress, hydrostatic pressure, stretch, and biophysical cues, such as extracellular matrix mimetic substrates, are discussed. The application of biomechanical forces or biophysical cues to the stem cell microenvironment will be beneficial for enhancing the immunomodulatory function of MSCs during cultivation and overcoming the current limitations of MSC therapy.

Mesenchymal stem cells for restoration of ovarian function

  • Yoon, Sook Young
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제46권1호
    • /
    • pp.1-7
    • /
    • 2019
  • With the progress of regenerative medicine, mesenchymal stem cells (MSCs) have received attention as a way to restore ovarian function. It has been reported that MSCs derived from bone marrow, adipose, umbilical cord blood, menstrual blood, and amniotic fluid improved ovarian function. In light of previous studies and advances in this field, there are increased expectations regarding the utilization of MSCs to restore ovarian function. This review summarizes recent research into potential applications of MSCs in women with infertility or primary ovarian insufficiency, including cases where these conditions are induced by anticancer therapy.

개 지방세포 유래의 중간엽 줄기세포의 종양형성시험 (Tumorigenesis Study of Canine Adipose Derived-mesenchymal Stem Cell)

  • 이은선;권은아;박정란;강병철;강경선;조명행
    • Toxicological Research
    • /
    • 제23권3호
    • /
    • pp.271-278
    • /
    • 2007
  • Several recent studies demonstrated the potential of bioengineering using stem cells in regenerative medicine. Adult mesenchymal stem cells (MSCs) have the pluripotency to differentiate into cells of mesodermal origin, i.e., bone, cartilage, adipose, and muscle cells; they, therefore, have many potential clinical applications. On the other hand, stem cells possess a self-renewal capability similar to cancer cells. For safety evaluation of MSCs, in this study, we tested tumorigenecity of canine adipose derived mesenchymal stem cells (cAD-MSCs) using Balb/c-nu mice. In this study, there were no changes in mortality, clinical signs, body weights and biochemical parameters of all animals treated. In addition, there were no significant changes between control and treated groups in autopsy findings. These results indicate that cAD-MSC has no tumorigenic potential under the condition in this study.

중간엽 줄기세포를 이용한 골재생의 임상적 활용 (Clinical Use of Mesenchymal Stem Cells in Bone Regeneration)

  • 박찬우;임승재;박윤수
    • 대한정형외과학회지
    • /
    • 제54권6호
    • /
    • pp.490-497
    • /
    • 2019
  • 최근 줄기세포에 대한 생물학적 지식의 발전으로 인해 이를 실제 환자의 치료에 적용시키기 위한 다양한 노력들이 이루어지고 있다. 중간엽 줄기세포는 골수 흡인물로부터 처음 발견되었으나 현재는 지방, 피부, 근육, 제대혈 등 다양한 조직으로부터 추출될 수 있는 다능성 기질세포로 이해되고 있다. 그동안 중간엽 줄기세포의 골형성능은 여러 실험 및 동물 연구를 통해 증명되었으며 골결손, 골괴사, 불유합 등의 어려운 임상 상황에서 일부 성공적인 골재생 결과들이 보고되고 있다. 하지만 아직까지 각 질환별 적응증이나 표준화된 적용법이 마련되어 있지 않으며 효능 및 안전성에 대한 객관적 증거가 부족한 상태이다. 중간엽 줄기세포를 이용한 골재생은 앞으로 더욱 확대될 가능성이 높으나 표준적인 치료로 인정받기 위해서는 아직 해결되어야 할 과제들 또한 남아 있다.

The potential of mesenchymal stem cells derived from amniotic membrane and amniotic fluid for neuronal regenerative therapy

  • Kim, Eun Young;Lee, Kyung-Bon;Kim, Min Kyu
    • BMB Reports
    • /
    • 제47권3호
    • /
    • pp.135-140
    • /
    • 2014
  • The mesenchymal stem cells (MSCs), which are derived from the mesoderm, are considered as a readily available source for tissue engineering. They have multipotent differentiation capacity and can be differentiated into various cell types. Many studies have demonstrated that the MSCs identified from amniotic membrane (AM-MSCs) and amniotic fluid (AF-MSCs) are shows advantages for many reasons, including the possibility of noninvasive isolation, multipotency, self-renewal, low immunogenicity, anti-inflammatory and nontumorigenicity properties, and minimal ethical problem. The AF-MSCs and AM-MSCs may be appropriate sources of mesenchymal stem cells for regenerative medicine, as an alternative to embryonic stem cells (ESCs). Recently, regenerative treatments such as tissue engineering and cell transplantation have shown potential in clinical applications for degenerative diseases. Therefore, amnion and MSCs derived from amnion can be applied to cell therapy in neuro-degeneration diseases. In this review, we will describe the potential of AM-MSCs and AF-MSCs, with particular focus on cures for neuronal degenerative diseases.