• Title/Summary/Keyword: Mercaptoacetic acid

Search Result 13, Processing Time 0.021 seconds

Adsorptive Stripping Voltammetry of Ge(IV)-Mercaptoacetic Acid Complex (Ge(Ⅳ)-Mercaptoacetic Acid 착물에 의한 흡착벗김 전압-전류법)

  • Park, Chan Il;Seong, Suk Hee;Cha, Ki Won
    • Journal of the Korean Chemical Society
    • /
    • v.43 no.1
    • /
    • pp.36-41
    • /
    • 1999
  • The adsorptive stripping voltammetric determination method of trace germanium (IV) using mercaptoacetic acid as a ligand was studied. Optimal conditions were found to be 0.25 M NaCl solution (pH 6.0) containing mercaptoacetic acid concentration of $5.0{\times}10^{-6}M$. The peak potential appeared at - 1.402 V vs. Ag/AgCl. Effects of sodium chloride concentration, mercaptoacetic acid concentration, and accumulation time for the complex of Ge(IV)-Mercaptoacetic acid on the peak current were studied. Amberlite IRC-718 chelating resin was applied to the separation of Ge(IV) from other metal ions.

  • PDF

Biological Toxicity Changes of Mercaptoacetic Acid and Mercaptopropionic Acid Upon Coordination onto ZnS:Mn Nanocrystal

  • Kong, Hoon-Young;Hwang, Cheong-Soo;Byun, Jong-Hoe
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.657-662
    • /
    • 2012
  • Mercaptoacetic acid (MAA) and mercaptopropionic acid (MPA) capped ZnS:Mn nanocrystals were synthesized and their physical characteristics were examined by XRD, HR-TEM, EDXS, and FT-IR spectroscopy. The optical properties of the MPA capped ZnS:Mn nanocrystals dispersed in aqueous solution were also measured by UV/Vis and solution photoluminescence (PL) spectra, which showed a broad emission peak around 598 nm (orange light emissions) with calculated relative PL efficiency of 5.2%. Comparative toxicity evaluation of the uncoordinated ligands, MAA and MPA, with the corresponding ZnS:Mn nanocrystals revealed that the original ligands significantly suppressed the growth of wild type E. coli whereas the ligandcapped nanocrystals did not show significant toxic effects. The reduced cytotoxicity of the conjugated ZnS:Mn nanocrystals was also observed in NIH/3T3 mouse embryonic fibroblasts. These results imply that potential toxicities of the capping ligands can be neutralized on ZnS:Mn surface.

Studies on the Influence of Mercaptoacetic Acid (MAA) Modification of Cassava (Manihot sculenta Cranz) Waste Biomass on the Adsorption of Cu2+ and Cd2+ from Aqueous Solution

  • Horsfall, M. Jnr.;Spiff, A.I.;Abia, A.A.
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.7
    • /
    • pp.969-976
    • /
    • 2004
  • Cassava peelings waste, which is both a waste and pollutant, was chemically modified using mercaptoacetic acid (MAA) and used to adsorb $Cu^{2+}\;and\;Cd^{2+}$ from aqueous solution over a wide range of reaction conditions at $30^{\circ}C$. Acid modification produced a larger surface area, which significantly enhanced the metal ion binding capacity of the biomass. An adsorption model based on the $Cu^{2+}/Cd^{2+}$ adsorption differences was developed to predict the competition of the two metal ions towards binding sites for a mixed metal ion system. The phytosorption process was examined in terms of Langmuir, Freundlich and Dubinin-Radushkevich models. The models indicate that the cassava waste biomass had a greater phytosorption capacity, higher affinity and greater sorption intensity for $Cu^{2+}\;than\;Cd^{2+}$. According to the evaluation using Langmuir equation, the monolayer binding capacity obtained was 127.3 mg/g $Cu^{2+}$ and 119.6 mg/g $Cd^{2+}$. The kinetic studies showed that the phytosorption rates could be described better by a pseudo-second order process and the rate coefficients was determined to be $2.04{\times}10^{-3}\;min^{-1}\;and\;1.98{\times}10^{-3}\;min^{-1}\;for\;Cu^{2+}\;and\;Cd^{2+}$ respectively. The results from these studies indicated that acid treated cassava waste biomass could be an efficient sorbent for the removal of toxic and valuable metals from industrial effluents.

Studies on Synthesis and Heterocyclisation Reactions of Michael Products and Formation of New 1, 4-Thiazine Quinoxaline Derivatives

  • Mahgoub, S.A.
    • Archives of Pharmacal Research
    • /
    • v.13 no.4
    • /
    • pp.319-324
    • /
    • 1990
  • Synthesis of $\alpha$-piperidino and $\alpha$-morphelino styryl quinoxalinone 2f, 2g respectively by facile one step method is reported. The Michael adducts (3a-d) obtained by the interaction of 2-styryl-2 (1H) quinoxalinone (2) and ethylacetoacetate have been treated with resorcino and hydroxylamine separately. With resorcinol the chromones (4) are obtained whereas with ydroxylamine isoxazoles (6) are the products. Michael addition of acetylacetone to 2 leads to 3-[1'-aryl-2'-(2'-hydroxy-3'-quinoxalinyl)ethyl]-2, 4-pentanediones (5) which undergo cyclisation with hydroxylamine to give isoxazoles (7). Addition of thiopenol and thioglycolic acid to 2 gives 3-$\alpha$[$\beta$-(phenyl)-$\beta$-(plenylthio)]ethyl-2(1H)-quinoxalinone (8) and 3-$\alpha$-[$\beta$-phenyl)-$\beta$-(hydroxycarbonylmethylithio)]-ethyl-2(1H)-qui noxalinone (9) respectively. 2-Bromomethyl-2(1H)-quinoxalinone (1b) reacts with thioglycolic acid to gives S-[2 (1H)-oxoquionoxaline-3-yl-methyl] mercaptoacetic acid (10) which on cyclisation with acetic anhydride/pyridine affords 1, 2, 5, 6-tetrahydro [1, 4]thiazino[4, 3-a] quinoxaline-1, 6-dione (11).

  • PDF

Synthesis of 1-$\beta$-D-Arabinofuranosylcytosine-5'-methylthioacetate and Evaluation of Its Inhibitory Effect on DNA Synthesis (1-$\beta$-D-Arabinofuranosylcytosine-5'-methylthioacetate의 합성 및 이의 DNA 합성애 대한 억제작용 평가)

  • 이희주;송민경
    • YAKHAK HOEJI
    • /
    • v.30 no.5
    • /
    • pp.238-244
    • /
    • 1986
  • As one of the starting materials, methylthioacetyl chloride(7) was synthesized in fair yield from mercaptoacetic acid via methyl methylthioacetate(5) prepared by alkylation employing N, N'-dicyclohexyl-O-methylisourea(4). Then 1-$\beta$-D-arabinofuranosylcytosine-5'-methylthioacetate (3) was prepared by esterification of ara-C with obtained methylthioacetyl chloride and tested for inhibitory activity on DNA synthesis in the growing primary hepatocytes and hepatoma strains($H_4$-II-E and HTC cells). In these in vitro cell lines, the inhibitory effect of ara-C-MTA(3) on DNA synthesis was similar to that of its parent ara-C but slightly lower.

  • PDF

Photocurrent of CdSe nanocrystals on singlewalled carbon nanotube-field effect transistor

  • Jeong, Seung-Yol;Lim, Seung-Chu;Lee, Young-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.03b
    • /
    • pp.40-40
    • /
    • 2010
  • CdSe nanocrystals (NCs) have been decorated on singlewalled carbon nanotubes (SWCNTs) by combining a method of chemically modified substrate along with gate-bias control. CdSe/ZnS core/shell quantum dots were negatively charged by adding mercaptoacetic acid (MAA). The silicon oxide substrate was decorated by octadecyltrichlorosilane (OTS) and converted to hydrophobic surface. The negatively charged CdSe NCs were adsorbed on the SWCNT surface by applying the negative gate bias. The selective adsorption of CdSe quantum dots on SWCNTs was confirmed by confocal laser scanning microscope. The measured photocurrent clearly demonstrates that CdSe NCs decorated SWCNT can be used for photodetector and solar cell that are operable over a wide range of wavelengths.

  • PDF

Albumin-conjugated Cadmium Sulfide Nanoparticles and their Interaction with KB Cells

  • Selim, K.M. Kamruzzaman;Kang, Inn-Kyu;Guo, Haiqing
    • Macromolecular Research
    • /
    • v.17 no.6
    • /
    • pp.403-410
    • /
    • 2009
  • Cytotoxicity is a severe problem of cadmium sulfide nanoparticles(CSNPs) for use in biological systems. In the present study, mercaptoacetic acid-coated CSNPs were conjugated with bovine serum albumin (BSA) to improve biocompatibility. The surface properties of the CSNPs and albumin-conjugated CSNPs (ACSNPs) were characterized by XRD, UV, FTIR, EA, TEM and DLS. Human breast cancer cells (KB cells) were then cultured in the presence of the nanoparticles to evaluate the cytotoxicity of CSNPs and ACSNPs. Finally, the fluorescence intensity of the nanoparticles' aqueous solution was examined using a fluorescence spectrometer. The results showed that the cell compatibility and fluorescence intensity of ACSNPs were higher than those of CSNPs. The strongly luminescent features of the biocompatible ACSNPs are promising for use in biological fields such as cellular labeling, intracellular tracking and molecular imaging.