• 제목/요약/키워드: Menadione

검색결과 75건 처리시간 0.031초

Apoptosis Induction by Menadione in Human Promyelocytic Leukemia HL-60 Cells

  • Sa, Duck-Jin;Lee, Eun-Jee;Yoo, Byung-Sun
    • Toxicological Research
    • /
    • 제25권3호
    • /
    • pp.113-118
    • /
    • 2009
  • Cell death induced by menadione (vitamin K-3,2-methyl-1,4-naphthoquinone) has been investigated in human promyelocytic leukemia HL-60 cells. Menadione was found to induce both apoptosis and necrosis in HL-60 cells. Low concentration ($1{\sim}$50 ${\mu}$M) of menadione induced apoptotic cell death, which was demonstrated by typical DNA ladder patterns on agarose gel electrophoresis and flow cytometry analysis. In contrast, a high concentration of menadione (100 ${\mu}$M) induced necrotic cell death, which was demonstrated by DNA smear pattern in agarose gel electrophoresis. Necrotic cell death was accompanied with a great reduction of cell viability. Menadione activated caspase-3, as evidenced by both increased protease activity and proteolytic cleavage of 116 kDa poly(ADP-ribose) polymerase (PARP) into 85 kDa cleavage product. Caspase-3 activity was maximum at 50 ${\mu}$M of menadione, and very low at 100 ${\mu}$M of menadione. Taken together, our results showed that menadione induced mixed types of cell death, apoptosis at low concentrations and necrosis at high concentrations in HL-60 cells.

Menadione에 의한 흰쥐 혈소판 세포독성에서 nitric oxide의 역할 (The Role of Nitric Oxide in Menadione-Induced Cytotoxicity in Rat Platelets)

  • 승상애;김대병;윤여표;정진호
    • Toxicological Research
    • /
    • 제11권2호
    • /
    • pp.303-308
    • /
    • 1995
  • Nitric oxide, a physiological transmitter, is reported to mediate cellular injury in various tissues. Its reactivity to free radical is believed to be one of the reasons for its involvement in cytotoxicity. Menadione, a representative quinone, is cytotoxic to several cell systems including isolated hepatocyte, endothelial cell and red blood cells. Its toxic mechanism is related to oxidative stress, mediated by toxic free radicals. Our previous studies demonstrated that menadione induced cell lysis and increase of oxygen consumption in platelets. It has been reported that platelets have nitric oxide producing enzyme, nitric oxide synthase. Thus, we have investigated to manifest the role of nitric oxide.in menadione-induced cytotoxicity in rat platelets. Menadione induced cytotoxicity in platelets was unaffected by $N^G$-nitro-arginine methyl ester (L-NAME), selective and competitive inhibitor of nitric oxide synthase. We also invesitgated the role of extracellular nitric oxide in menadione-induced cytotoxicity of platelets by addition with sodium nitroprusside (SNP). SNP did not affect platelet cytotoxicity by menadione. These results suggested that nitric oxide which was generated endogeneously or exogeneously might have a negligible role in menadione-induced cytotoxicity in rat platelets.

  • PDF

Menadione-induced Cytotoxicity in Rat Platelets: Absence of the Detoxifying Enzyme, Quinone Reductase

  • Kim, Kyung-Ah;Kim, Mee-Jeong;Ryu, Chung-Kyu;Chang, Moon-Jeong;Chung, Jin-Ho
    • Archives of Pharmacal Research
    • /
    • 제18권4호
    • /
    • pp.256-261
    • /
    • 1995
  • The elevation of intracellular $Ca^{2+}$ in various tissue through oxidative stress induced by menadione has been well documented. Increase of $Ca^{2+}$ level inplatelets results in aggreaction of patelets. To test the hypothesis that menadione-induced $Ca^{2+}$ elevations can play a role in platelet aggregation, we have studied the effect of menadione on aggragation of platelets isolated from female rats. Treatment with menadione to platelet rich plasma (PRP), which proved to be 60% as determined by aggregometry. however, exposure of PRP to menadione leads to a loss of cell viability, as measured by lactae dehydrogenase (LDH) leakage, suggesting that menadione might induce cell lysis rather than aggregation of platelets. Turbidty changes induced by menadione were unaffected by addition ofl dicoumarol, which is a quinone reducellular factions of patelets. These data, which indicate an absence of the QR detoxifying pathway, suggest that platelets may be more susceptible to menadione-induced cytotoxicity than certain other cell, as hepatocytes.

  • PDF

Quinones (menadione, benzoquinone, 및 2,3-dimethoxy-1,4-naphthoquinone)의 혈소판 세포독성 (Effects of Various Quinones (Menadione, Benzoquinone and 2,3-Dimethoxy-1,4-naphthoquinone) on Rat Platelets)

  • 승상애;이무열;이주영;김미정;정진호
    • Toxicological Research
    • /
    • 제12권2호
    • /
    • pp.289-293
    • /
    • 1996
  • Our previous studies demonstrated that quinone (menadione) is cytotoxic to rat platelets. In an attempt to assess the relative contributions of redox cycling and/or arylation in quinone-induced cytotoxicity, we have studied three quinones with different mechanisms: 2, 3-dimethoxy-1, 4-naphthoquinone (DMNQ; pure redox cycler), menadione (both redox cycler and arylator), and 1, 4-benzoquinone (pure arylator). The order of redox cycling capacity in platelet rich plasma (PRP) isolated from rats was menadione>DMNQ>1, 4-benzoquonone, which was consistent with the previous studies using isolated hepatocytes. 1, 4-Benzoquinone was more toxic to rat platelets than menadione, while DMNQ did not cause cell death at all. Lactate dehydrogenase inhibition studies revealed that 1, 4-benzoquinone inhibited significantly in a time-dependent manner, while menadione and DMNQ did not at all. These results suggested that arylation by quinone compounds might play a critical role in quinone-induced cytotoxicity in rat platelets.

  • PDF

Menadione과 Plasma내의 Protein Thiol의 비효소적인 화학반응에 의한 활성산소 생성 (Generation of Reactive Oxygen Species by Nonenzymatic Reaction of Menadione with Protein Thiols in Plasma)

  • 정선화;이무열;이주영;장문정;정진호
    • Toxicological Research
    • /
    • 제13권3호
    • /
    • pp.223-228
    • /
    • 1997
  • Quinones have been reported to undergo nonenzymatic reaction with thiols to generate reactive oxygens. It is therefore possible that the nonenzymatic reaction of quinones with thiols in plasma could lead to potentJared cellular toxicity or disease. When 1 mM menadione was added in plasma under pH 11.2, 7.4 and 5.0, the increase in oxygen consumption rate was the order of pH 11.2 > pH 7.4 > pH 5.0. In addition, oxygen consumption rates under plasma anticoagulated with trisodium citrate solution (pH 7.85) was significantly higher than those with acid-citrate-dextrose solution (pH 6.87). SOD and catalase reduced the rate of oxygen consumption induced by menadione in plasma. Taken together, these results suggest that the menadione-induced increased oxygen consumption was due to nonenzymatic reaction of menadione with thiols in the plasma. The presence of plasma has an additive effect on the increased oxygen consumption rates induced by the menadione treatments on our model tissue, platelets, as compared between washed platelet (WP) and platelet rich plasma (PRP). Cytotoxicity, as determined by LDH release, are well correlated with the oxygen consumption rates observed in each system and strongly suggest that menadione-induced cytotoxicity can be increased with the presence of blood plasma.

  • PDF

Menadione의 대사체인 Menadione-Glutathione Conjugate(MEN-SG)가 흰쥐 혈소판에 미치는 세포독성의 평가 및 MEN-SG의 안정성에 관한 연구 (Evaluation of Cytotoxicity to Rat Platelets by Menadione-Glutathione Conjugate and its Stability in Biological Assay System)

  • 서동철;정선화;이주영;김미정;정진호
    • Toxicological Research
    • /
    • 제11권2호
    • /
    • pp.295-302
    • /
    • 1995
  • Menadione-ghitathione conjugate (MEN-SG), a metabolite of menadione, is known to be a redoxcycler in rat hepatocyte subcellular fraction. Therefore, it was assumed that MEN-SG could exert cytotoxlclty to ral platelets, another target tissue of menadione. We first synthesized MEN-SG, the identity of which was verified by mass, $^1{H}$-NMR and UV-visible spectra. In addition, the stability of MEN-SG was investigated in biological assay system. MEN-SG was degraded in a time-dependent manner in DMSO which had been used as a vehicle and thus, tris-HCl buffer was used as a vehicle of MEN-SG despite the low solubility in it. Perchloric acid as well as platelets itself did not affect the stability of MEN-SG. Our next attempt was the evaluation of cytotoxicity of MEN-SG in rat platelets. MEN-SG did not induce cytotoxicity to rat platelets measured by two different methods, LDH release and turbidity changes. The extents of oxygen consumption by MEN-SG in intact platelets were significantly lower than those by menadione, though it had been observed that oxygen consumptions by menadione and MENSG were similar in subcellular fractioas of platelets. These results suggest that MEN-SG is not toxic to rat platelets despite its redox cycling capacity and glutathione conjugation reaction of menadione could be regarded as a detoxification process.

  • PDF

Menadione의 Survivin 하향 조절을 통한 MKN45 세포의 세포사멸 유도 효과 (Menadione Induced Apoptosis in MKN45 Cells via Down-regulation of Survivin)

  • 이민호;김정용;조윤정;김도현;양지영;권혜진;박민;우현준;김사현;김종배
    • 대한임상검사과학회지
    • /
    • 제51권1호
    • /
    • pp.71-77
    • /
    • 2019
  • Menadione은 종양 억제 물질로 알려진 바 있다. 현재 많은 연구에서 다양한 암세포주에 대하여 Menadione의 잠재적인 항암물질로서의 가능성이 보고되었다. 본 연구에서는 Menadione의 항암효과와 세포사멸작용에 연관된 분자신호를 위암세포주에서 확인하였다. Menadione 처리는 위암세포인 MKN45의 세포생존능을 감소시켰다. 감소된 세포생존능은 Western blotting을 통해 caspase-3 과 caspase-7의 활성화와 PARP가 cleavage 된 것을 확인함으로써 세포사멸작용이 유도되었다는 것을 확인했다. 위세포사멸단백질들의 저해제로 작용하는 survivin의 발현을 menadione이 억제한다는 것을 확인함으로써, 세포사멸과정에 포함된 상위조절인자를 확인했다. 우리는 survivin 발현을 조절하는 전사인자로 알려진 ${\beta}$-catenin 또한 menadione에 의해 하향 조절된다는 것을 확인했다. 이전 연구에서 우리는 menadione이 세포사멸유도를 저해는 XIAP의 발현을 억제한다는 것을 확인했으며, menadione이 AGS세포에서 G2/M 세포주기 정체를 유도한다는 것을 확인하였다. 우리는 또 다른 위암세포주인 MKM45 세포에서 menadione의 이전과 다른 항암 기전을 밝혀냈다. 비록 더 자세한 연구가 필요하겠지만, 이 연구를 통해 증명된 억제기전은 menadione에 의한 항암효과를 이해하는 데 도움이 될 것으로 사료된다.

Menadione (Vitamin K3) Induces Apoptosis of Human Oral Cancer Cells and Reduces their Metastatic Potential by Modulating the Expression of Epithelial to Mesenchymal Transition Markers and Inhibiting Migration

  • Suresh, Shruthy;Raghu, Dinesh;Karunagaran, Devarajan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권9호
    • /
    • pp.5461-5465
    • /
    • 2013
  • Oral cancer is one of the most commonly occurring cancers worldwide, decreasing the patient's survival rate due to tumor recurrence and metastasis. Menadione (Vitamin K3) is known to exhibit cytotoxicity in various cancer cells but the present study focused on its effects on viability, apoptosis, epithelial to mesenchymal transition (EMT), anchorage independent growth and migration of oral cancer cells. The results show that menadione is more cytotoxic to SAS (oral squamous carcinoma) cells but not to non-tumorigenic HEK293 and HaCaT cells. Menadione treatment increased the expression of pro-apoptotic proteins, Bax and p53, with a concurrent decrease in anti-apoptotic proteins, Bcl-2 and p65. Menadione induced the expression of E-cadherin but reduced the expression of EMT markers, vimentin and fibronectin. Menadione also inhibited anchorage independent growth and migration in SAS cells. These findings reveal and confirm that menadione is a potential candidate in oral cancer therapy as it exhibits cytotoxic, antineoplastic and antimigratory effects besides effectively blocking EMT in oral cancer cells.

Bacillus cereus의 호기적 호흡쇄에 있어서 세포질막 내에 존재하는 NADH;menadione oxidoreductase의 특성 (Properties of the Membrane-Bound NADH;Menadione Oxidoreductase in the Aerobic Respiratory Chain of Bacillus cereus)

  • 강지원;김영재
    • 생명과학회지
    • /
    • 제18권3호
    • /
    • pp.418-421
    • /
    • 2008
  • 호기적으로 자란 Bacillus cereus KCTC 3674로 부터 조제된 막은 NADH만을 산화하고, deamino-NADH는 거의 산화하지 않았다. 호홉쇄와 연계된 NADH oxidase계는 $K_m$ 값이 약 65 ${\mu}M$이였다. 한편, NADH oxidase계 중 NADH: menadione oxidoreductase의 효소학적 특성이 조사되었다. NADH: menadione oxidoreductase의 최고활성은 0.1 M KCl (또는 NaCl) 존재 하에서 pH 9.5에서 얻어졌다. NADH: menadione oxidoreductase의 활성은 rotenone, capsaicin, $AgN0_3$와 같은 호흡저해제에 매우 저항적이였다. 그러나 매우 흥미롭게도 NADH: menadione oxidoreductase의 활성은 HQNO (2-heptyl-4-hydroxyquinoline-N-oxide)와 같은 저해제에 의해서는 오히려 촉진되어 졌다.

Menadione-Modified Anodes for Power Enhancement in Single Chamber Microbial Fuel Cells

  • Ahmed, Jalal;Kim, Sunghyun
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권12호
    • /
    • pp.3649-3653
    • /
    • 2013
  • As anode fabrication with different materials has been proven to be a successful alternative for enhancing power generation in the microbial fuel cells, a new approach to improved performance of MFCs with the use of menadione/carbon powder composite-modified carbon cloth anode has been explored in this study. Menadione has formal potential to easily accept electrons from the outer membrane cytochromes of electroactive bacteria that can directly interact with the solid surface. Surface bound menadione was able to maintain an electrical wiring with the trans-membrane electron transfer pathways to facilitate extracellular electron transfer to the electrode. In a single chamber air cathode MFC inoculated with aerobic sludge, maximum power density of $1250{\pm}35mWm^{-2}$ was achieved, which was 25% higher than that of an unmodified anode. The observed high power density and improved coulomb efficiency of 61% were ascribed to the efficient electron shuttling via the immobilized menadione.