• Title/Summary/Keyword: Memristor Emulator

Search Result 4, Processing Time 0.016 seconds

Floating Memristor Emulator Circuit (비접지형 멤리스터 에뮬레이터 회로)

  • Kim, Yongjin;Yang, Changju;Kim, Hyongsuk
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.8
    • /
    • pp.49-58
    • /
    • 2015
  • A floating type of memristor emulator which acts like the behavior of $TiO_2$ memristor has been developed. Most of existing memristor emulators are grounded type which is built disregarding the connectivity with other memristor or other devices. The developed memristor emulator is a floating type whose output does not need to be grounded. Therefore, the emulator is able to be connected with other devices and be utilized for the interoperability test with various other circuits. To prove the floating function of the proposed memristor emulator, a Wheatstone bridge is built by connecting 4 memristor emulators in series and parallel. Also this bridge circuit suggest that it is possible to weight calculation of the neural network synapse.

Comparative Analysis of Synthetic Memristor Emulator and M-R Mutator (합성형 멤리스터 에뮬레이터와 M-R 뮤테이터의 특성 비교)

  • Choi, Hyuncheol;Kim, Hyongsuk
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.5
    • /
    • pp.98-107
    • /
    • 2016
  • An analytical comparison of a synthetic memristor emulator and a M-R mutator-based memristor emulator has been performed. Memristor is an electrical element with the characteristic of variable resistance. It is called the fourth fundamental electrical element following resistor, capacitor, and inductor. Memristor emulator is a circuit which implements the feature of variable resistance via the composition of various electrical devices. It is an essential circuit to study memristor characteristics during the time before it is commercially available. There are two representative memristor emulators depending upon their implementation methods. One is a memristor emulator which is synthesized via combining various electrical devices and the other one is M-R mutator-based memristor emulator implemented by extracting resistance from a nonlinear device. In this paper, implementation methods of these two memristor emulators are studied and their differences are investigated by analysing their characteristics.

Practical Implementation of Memristor Emulator Circuit on Printed Circuit Board (PCB에 구현한 멤리스터 에뮬레이터 회로 및 응용)

  • Choi, Jun-Myung;Sin, SangHak;Min, Kyeong-Sik
    • Journal of IKEEE
    • /
    • v.17 no.3
    • /
    • pp.324-331
    • /
    • 2013
  • In this paper, we implemented memristor emulator circuit on Printed Circuit Board (PCB) and observed the inherent pinched hysteresis characteristic of memristors by measuring the emulator circuit on PCB. The memristor emulator circuit implemented on PCB is composed of simple discrete devices not using any complicated circuit blocks thus we can integrate the memristor emulator circuits in very small layout area on Silicon substrate. The programmable gain amplifier is designed using the proposed memristor emulator circuit and verified that the amplifier's voltage gain can be controlled by programming memristance of the emulator circuit by circuit simulation. Threshold switching is also realized in the proposed emulator circuit thus memristance can remain unchanged when the input voltage applied to the emulator circuit is lower than VREF. The memristor emulator circuit and the programmable gain amplifier using the proposed circuit can be useful in teaching the device operation, functions, characteristics, and applications of memristors to students when thet cannot access to device and fabrication technologies of real memristors.

Charge Controlled Meminductor Emulator

  • Sah, Maheshwar Pd.;Budhathoki, Ram Kaji;Yang, Changju;Kim, Hyongsuk
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.6
    • /
    • pp.750-754
    • /
    • 2014
  • Emulations of memristor-family elements are very important, since their physical realizations are very difficult to achieve with recent technologies. Although some previous studies succeeded in designing memristor and memcapacitor emulators, no significant contribution towards meminductor emulator has been presented so far. The implementation of a meminductor emulator is very important, since real meminductors are not expected to appear in near future. We designed the first meminductor emulator whose inductance can be varied by an external current source without employing any memrisitve system. The principle of our architecture and its feasibility have been verified using SPICE simulation.