• Title/Summary/Keyword: Memory-based Collaborative Filtering

Search Result 29, Processing Time 0.024 seconds

A Combined Forecast Scheme of User-Based and Item-based Collaborative Filtering Using Neighborhood Size (이웃크기를 이용한 사용자기반과 아이템기반 협업여과의 결합예측 기법)

  • Choi, In-Bok;Lee, Jae-Dong
    • The KIPS Transactions:PartB
    • /
    • v.16B no.1
    • /
    • pp.55-62
    • /
    • 2009
  • Collaborative filtering is a popular technique that recommends items based on the opinions of other people in recommender systems. Memory-based collaborative filtering which uses user database can be divided in user-based approaches and item-based approaches. User-based collaborative filtering predicts a user's preference of an item using the preferences of similar neighborhood, while item-based collaborative filtering predicts the preference of an item based on the similarity of items. This paper proposes a combined forecast scheme that predicts the preference of a user to an item by combining user-based prediction and item-based prediction using the ratio of the number of similar users and the number of similar items. Experimental results using MovieLens data set and the BookCrossing data set show that the proposed scheme improves the accuracy of prediction for movies and books compared with the user-based scheme and item-based scheme.

Robustness Analysis of a Novel Model-Based Recommendation Algorithms in Privacy Environment

  • Ihsan Gunes
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.5
    • /
    • pp.1341-1368
    • /
    • 2024
  • The concept of privacy-preserving collaborative filtering (PPCF) has been gaining significant attention. Due to the fact that model-based recommendation methods with privacy are more efficient online, privacy-preserving memory-based scheme should be avoided in favor of model-based recommendation methods with privacy. Several studies in the current literature have examined ant colony clustering algorithms that are based on non-privacy collaborative filtering schemes. Nevertheless, the literature does not contain any studies that consider privacy in the context of ant colony clustering-based CF schema. This study employed the ant colony clustering model-based PPCF scheme. Attacks like shilling or profile injection could potentially be successful against privacy-preserving model-based collaborative filtering techniques. Afterwards, the scheme's robustness was assessed by conducting a shilling attack using six different attack models. We utilize masked data-based profile injection attacks against a privacy-preserving ant colony clustering-based prediction algorithm. Subsequently, we conduct extensive experiments utilizing authentic data to assess its robustness against profile injection attacks. In addition, we evaluate the resilience of the ant colony clustering model-based PPCF against shilling attacks by comparing it to established PPCF memory and model-based prediction techniques. The empirical findings indicate that push attack models exerted a substantial influence on the predictions, whereas nuke attack models demonstrated limited efficacy.

Shilling Attacks Against Memory-Based Privacy-Preserving Recommendation Algorithms

  • Gunes, Ihsan;Bilge, Alper;Polat, Huseyin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.5
    • /
    • pp.1272-1290
    • /
    • 2013
  • Privacy-preserving collaborative filtering schemes are becoming increasingly popular because they handle the information overload problem without jeopardizing privacy. However, they may be susceptible to shilling or profile injection attacks, similar to traditional recommender systems without privacy measures. Although researchers have proposed various privacy-preserving recommendation frameworks, it has not been shown that such schemes are resistant to profile injection attacks. In this study, we investigate two memory-based privacy-preserving collaborative filtering algorithms and analyze their robustness against several shilling attack strategies. We first design and apply formerly proposed shilling attack techniques to privately collected databases. We analyze their effectiveness in manipulating predicted recommendations by experimenting on real data-based benchmark data sets. We show that it is still possible to manipulate the predictions significantly on databases consisting of masked preferences even though a few of the attack strategies are not effective in a privacy-preserving environment.

CLASSIFICATION FUNCTIONS FOR EVALUATING THE PREDICTION PERFORMANCE IN COLLABORATIVE FILTERING RECOMMENDER SYSTEM

  • Lee, Seok-Jun;Lee, Hee-Choon;Chung, Young-Jun
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.1_2
    • /
    • pp.439-450
    • /
    • 2010
  • In this paper, we propose a new idea to evaluate the prediction accuracy of user's preference generated by memory-based collaborative filtering algorithm before prediction process in the recommender system. Our analysis results show the possibility of a pre-evaluation before the prediction process of users' preference of item's transaction on the web. Classification functions proposed in this study generate a user's rating pattern under certain conditions. In this research, we test whether classification functions select users who have lower prediction or higher prediction performance under collaborative filtering recommendation approach. The statistical test results will be based on the differences of the prediction accuracy of each user group which are classified by classification functions using the generative probability of specific rating. The characteristics of rating patterns of classified users will also be presented.

Improved Collaborative Filtering Using Entropy Weighting

  • Kwon, Hyeong-Joon
    • International Journal of Advanced Culture Technology
    • /
    • v.1 no.2
    • /
    • pp.1-6
    • /
    • 2013
  • In this paper, we evaluate performance of existing similarity measurement metric and propose a novel method using user's preferences information entropy to reduce MAE in memory-based collaborative recommender systems. The proposed method applies a similarity of individual inclination to traditional similarity measurement methods. We experiment on various similarity metrics under different conditions, which include an amount of data and significance weighting from n/10 to n/60, to verify the proposed method. As a result, we confirm the proposed method is robust and efficient from the viewpoint of a sparse data set, applying existing various similarity measurement methods and Significance Weighting.

  • PDF

Time-aware Collaborative Filtering with User- and Item-based Similarity Integration

  • Lee, Soojung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.9
    • /
    • pp.149-155
    • /
    • 2022
  • The popularity of e-commerce systems on the Internet is increasing day by day, and the recommendation system, as a core function of these systems, greatly reduces the effort to search for desired products by recommending products that customers may prefer. The collaborative filtering technique is a recommendation algorithm that has been successfully implemented in many commercial systems, but despite its popularity and usefulness in academia, the memory-based implementation has inaccuracies in its reference neighbor. To solve this problem, this study proposes a new time-aware collaborative filtering technique that integrates and utilizes the neighbors of each item and each user, weighting the recent similarity more than the past similarity with them, and reflecting it in the recommendation list decision. Through the experimental evaluation, it was confirmed that the proposed method showed superior performance in terms of prediction accuracy than other existing methods.

A New Collaborative Filtering Method for Movie Recommendation Using Genre Interest (영화 추천을 위한 장르 흥미도를 이용한 새로운 협력 필터링 방식)

  • Lee, Soojung
    • Journal of Digital Convergence
    • /
    • v.12 no.8
    • /
    • pp.329-335
    • /
    • 2014
  • Collaborative filtering has been popular in commercial recommender systems, as it successfully implements social behavior of customers by suggesting items that might fit to the interests of a user. So far, most common method to find proper items for recommendation is by searching for similar users and consulting their ratings. This paper suggests a new similarity measure for movie recommendation that is based on genre interest, instead of differences between ratings made by two users as in previous similarity measures. From extensive experiments, the proposed measure is proved to perform significantly better than classic similarity measures in terms of both prediction and recommendation qualities.

A Recommendation System of Exponentially Weighted Collaborative Filtering for Products in Electronic Commerce (지수적 가중치를 적용한 협력적 상품추천시스템)

  • Lee, Gyeong-Hui;Han, Jeong-Hye;Im, Chun-Seong
    • The KIPS Transactions:PartB
    • /
    • v.8B no.6
    • /
    • pp.625-632
    • /
    • 2001
  • The electronic stores have realized that they need to understand their customers and to quickly response their wants and needs. To be successful in increasingly competitive Internet marketplace, recommender systems are adapting data mining techniques. One of most successful recommender technologies is collaborative filtering (CF) algorithm which recommends products to a target customer based on the information of other customers and employ statistical techniques to find a set of customers known as neighbors. However, the application of the systems, however, is not very suitable for seasonal products which are sensitive to time or season such as refrigerator or seasonal clothes. In this paper, we propose a new adjusted item-based recommendation generation algorithms called the exponentially weighted collaborative filtering recommendation (EWCFR) one that computes item-item similarities regarding seasonal products. Finally, we suggest the recommendation system with relatively high quality computing time on main memory database (MMDB) in XML since the collaborative filtering systems are needed that can quickly produce high quality recommendations with very large-scale problems.

  • PDF

Social Network based Sensibility Design Recommendation using {User - Associative Design} Matrix (소셜 네트워크 기반의 {사용자 - 연관 디자인} 행렬을 이용한 감성 디자인 추천)

  • Jung, Eun-Jin;Kim, Joo-Chang;Jung, Hoill;Chung, Kyungyong
    • Journal of Digital Convergence
    • /
    • v.14 no.8
    • /
    • pp.313-318
    • /
    • 2016
  • The recommendation service is changing from client-server based internet service to social networking. Especially in recent years, it is serving recommendations with personalization to users through crowdsourcing and social networking. The social networking based systems can be classified depending on methods of providing recommendation services and purposes by using memory and model based collaborative filtering. In this study, we proposed the social network based sensibility design recommendation using associative user. The proposed method makes {user - associative design} matrix through the social network and recommends sensibility design using the memory based collaborative filtering. For the performance evaluation of the proposed method, recall and precision verification are conducted. F-measure based on recommendation of social networking is used for the verification of accuracy.

Entropy-based Similarity Measures for Memory-based Collaborative Filtering

  • Kwon, Hyeong-Joon;Latchman, Haniph
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.5 no.2
    • /
    • pp.5-10
    • /
    • 2013
  • We proposed a novel similarity measure using weighted difference entropy (WDE) to improve the performance of the CF system. The proposed similarity metric evaluates the entropy with a preference score difference between the common rated items of two users, and normalizes it based on the Gaussian, tanh and sigmoid function. We showed significant improvement of experimental results and environments. These experiments involved changing the number of nearest neighborhoods, and we presented experimental results for two data sets with different characteristics, and results for the quality of recommendation.