AVM(Around View Monitor)시스템은 ADAS(Advanced Driver Assistance Systems)의 한 종류로 운전자가 차량 주변을 한눈에 파악할 수 있게 도와주는 차량 시스템이다. AVM 시스템은 네 개의 카메라에서 입력받은 데이터를 실시간 처리하기 때문에 요구되는 메모리 대역폭이 크다. 특히 입력 영상의 해상도 증가에 따라 메모리 대역폭 수치가 크게 증가하기 때문에, 필요한 메모리 대역폭에 맞는 하드웨어 구조 설계가 필요하다. 본 논문은 설계에 기틀이 될 AVM 시스템 하드웨어 모델 네 종류를 제시한다. 각 모델은 입력 영상으로부터 유효 데이터를 추출하는 모듈의 유무, 영상처리를 위한 LUT 생성 모듈 유무로 결정된다. 논문에서는 모델 별로 상이한 필요 메모리 대역폭과 하드웨어 자원 사용량이 제시된다. 이를 토대로 설계자의 요구 사항에 맞는 모델을 선택하고 구현할 수 있다. 제시한 하드웨어 모델의 검증을 위해 VGA, FHD급 AVM 시스템을 구현하였다. 구현에는 XC7Z045 FPGA, DDR3가 이용되었으며, 30FPS로 동작한다.
본 논문은 전형적인 슈퍼샘플링과 거의 동일한 수준의 고화질 영상을 생성하는 동시에, 요구되는 메모리 크기와 메모리 대역폭을 줄일 수 있는 간단하고 효율적인 하드웨어 지원 안티알리아싱 알고리즘과 렌더링 구조를 제안한다. 본 논문에서는 가장 최근에 색상 값 결정을 위해 사용된 프레그먼트의 일부분 또는 병합된 결과를 저장하는 RUF (Recently Used Fragment) 버퍼와 RUF 버퍼의 정보를 이용하여 효과적으로 색상 값을 결정하는 알고리즘을 제안한다. 제안된 방법은 데이타 구조상 샘플링 포인트 수가 늘어날수록 슈퍼샘플링에 비해 메모리 절약 효과가 크다. 또한 본 논문의 실험결과 8산개(sparse) 샘플링 포인트를 가지는 경우, 슈퍼샘플링에 비해 제안된 안티알리아싱 기법은 약 1.3%의 색상 차이를 가지나, 렌더링 과정에서 요구되는 메모리 크기가 약 31%로 감소하였으며, 실험에 사용된 3차원 모델에 대해 평균 11%의 메모리 대역폭 감소를 보인다.
Communications for Statistical Applications and Methods
/
제26권6호
/
pp.611-622
/
2019
This paper considers the estimation of the long memory parameter in nonparametric regression with strongly correlated errors. The key idea is to minimize a unified mean squared error of long memory parameter to select both kernel bandwidth and the number of frequencies used in exact local Whittle estimation. A unified mean squared error framework is more natural because it provides both goodness of fit and measure of strong dependence. The block bootstrap is applied to evaluate the mean squared error. Finite sample performance using Monte Carlo simulations shows the closest performance to the oracle. The proposed method outperforms existing methods especially when dependency and sample size increase. The proposed method is also illustreated to the volatility of exchange rate between Korean Won for US dollar.
고속 입출력 장치를 갖는 다중 프로세서 시스템은 데이터의 처리 성능 향상과 함께 입출력의 집중화에 따른 병목 현상을 줄여줄 수 있다. 이 때 프로세서간의 데이터 전송에 사용되는 공유 메모리는 그 구성과 이용 방법에 따라 시스템 성능에 많은 영향을 미치게 되는데, 본 논문에서는 공유 메모리의 사용방법을 비동기, 메일박스를 통한 인터럽트 전달인지 방식으로 설정한 후 버퍼 및 공유 메모리의 최적 사용량을 예측할 수 있는 모델에 대해 연구하였다. 시스템에 주어지는 입출력 데이터는 이더넷(IEEE 802.3) 망에 흐르는 패킷을 모델로 하며, 이의 대역폭과 burstiness(패킷의 집중화 정도)에 따른 메모리 사용 상황에 대해 살펴보았다. 고속 이더넷(Fast Ethernet) 환경 하에서 시뮬레이션 및 실험에 의해 시스템의 입출력 대역폭뿐만 아니라 패킷의 집중화 정도에 따라서도 버퍼 및 공유 메모리의 사용량이 달라지며, 두 메모리 사이의 사용량에 대한 상관관계가 성립될 수 있음을 알 수 있다.
본 연구는 대규모 영상처리를 위한 메모리 확장을 위한 외장 메모리 확장장치 구현에 관련된 내용으로, 이는 영상처리를 위한 그래픽 워크스테이션에 장착되는 PCI(Peripheral Component Interconnect) Express Gen3 x8 인터페이스를 가지는 외장 메모리 어댑터 카드와 외장 DDR(Dual Data Rate) 메모리로 구성된 외장 메모리 보드로 구성되며, 메모리 어댑터 카드와 외장 메모리 보드간의 연결은 광 인터페이스를 통하여 이루어진다. 외장 메모리 억세스를 위해서는 Programmable I/O 방식과 DMA(Direct Memory Access) 방식을 모두 사용할 수 있도록 하여 영상 데이터의 효율적 송수신이 이루어지도록 하였다. 본 연구 결과의 구현은 Altera Stratix V FPGA(Field Programmable Gate Array)와 40G 광 트랜시버가 장착된 보드를 사용하였으며, 1.6GB/s의 대역폭 성능을 보여주고 있다. 이는 4K UHD(Ultra High Definition) 영상 한 채널을 담당할 수 있는 규모이다. 향후 본 연구를 계속 진행하여 3GB/s 이상 대역폭을 보이는 연구결과를 보일 예정이다.
Journal of electromagnetic engineering and science
/
제9권3호
/
pp.152-158
/
2009
We have developed a novel digital feedback predistortion(DFBPD) linearization based on RF feedback PD for the wide bandwidth modulated signals. The wideband PD operation is carried out by combining the DFBPD and memory lookup table(LUT). To experimentally demonstrate the linearization performance of the proposed PD technique for wideband signal, a class-AB amplifier using an LDMOSFET MRF6S23140 with 140-W peak envelope power is employed at 2.345 GHz. For a forward-link 2FA wideband code-division multiple-access signal with 10 MHz carrier spacing, the proposed DFBPD with memory LUT delivers the adjacent channel leakage ratio at an 10 MHz offset of -56.8 dBc, while those of the amplifier with and without DFBPD are -43.2 dBc and -41.9 dBc, respectively, at an average output power of 40 dBm. The experimental result shows that the new DFBPD with memory LUT provides a good linearization performance for the signal with wide bandwidth.
We propose a bandwidth prediction approach based on deep learning. The approach is intended to accurately predict the bandwidth of various types of mobile networks. We first use a machine learning technique, namely, the gradient boosting algorithm, to recognize the connected mobile network. Second, we apply a handover detection algorithm based on network recognition to account for vertical handover that causes the bandwidth variance. Third, as the communication performance offered by 3G, 4G, and 5G networks varies, we suggest a bidirectional long short-term memory model with time distribution for bandwidth prediction per network. To increase the prediction accuracy, pretraining and fine-tuning are applied for each type of network. We use a dataset collected at University College Cork for network recognition, handover detection, and bandwidth prediction. The performance evaluation indicates that the handover detection algorithm achieves 88.5% accuracy, and the bandwidth prediction model achieves a high accuracy, with a root-mean-square error of only 2.12%.
Memory can refer to a storage device that collects data, and it has evolved to increase the reading/writing speed and reduce the power consumption. As large amounts of data are processed by artificial intelligence services, the memory data capacity requires expansion. Dynamic random-access memory (DRAM) is the most widely used type of memory. In particular, graphics double date rate and high-bandwidth memory allow to quickly transfer large amounts of data and are used as memory solutions for artificial intelligence semiconductors. We analyze development trends in DRAM from the perspectives of processing speed and power consumption. We summarize the characteristics required for next-generation memory by comparing DRAM and other types of memory implementations. Moreover, we examine the shortcomings of DRAM and infer a next-generation memory for their compensation. We also describe the operating principles of spin-torque transfer magnetic random access memory, which may replace DRAM in next-generation devices, and explain its characteristics and advantages.
본 논문에서는 비디오 부호화기와 복호화기의 참조 영상 버퍼와 메모리 대역폭을 효과적으로 줄이는 방법을 제안한다. 일반적인 비디오 코덱에서 코딩의 효율을 높이기 위하여 이전 프레임들을 참조하는 방법을 많이 사용하는데, 최근에는 메모리 사용 및 메모리와 프로세서 간의 데이터 대역폭의 효율을 높이기 위하여 참조 프레임을 압축하여 저장하는 방법이 연구되고 있다. 이 방법은 이미 압축 및 복원 과정을 통해 열화가 생긴 참조 영상에 대하여 재 압축을 실행하고, 또 기존의 압축 코덱 내부에 부호화기와 복호화기가 추가되는 경우이기 때문에, 화질의 열화를 최소화하면서 복잡도가 낮은 코덱이 요구된다. 이에 관련된 대부분의 연구는 화질의 열화를 최소화하면서 효과적인 재압축을 할 수 있는 방향으로 진행되며 보통 양자화를 위해 고정길이 비트할당 방법을 사용한다. 본 논문에서는 영상의 특성을 고려한 적응적 블록단위 최대-최소 양자화를 통해 복잡도가 낮으면서 화질의 열화를 최소화 한 방법을 제안한다 제안한 방법에서는 $8{\times}8$ 크기의 블록을 기본 처리 단위로 하여 메모리 접근성을 용이하게 하면서, $8{\times}8$ 블록 내부의 $4{\times}4$ 블록 단위로 적응적인 양자화를 적용한다. 실험결과 기존의 고정길이 비트 할당을 통한 재 압축 방법에 대하여 BD-bitrate 관점에서 평균 1.7%, BD-PSNR 관점에서 평균0.03%의 성능향상을 얻을 수 있었다.
본 논문에서는 H.264/AVC 인코더의 성능 향상을 위해 다중 참조 프레임 기법과 묵시적 가중 예측 기법을 이용하고 낮은 외부 메모리 접근율을 위해 이전 참조 프레임 데이터를 재사용하는 인터 예측기 하드웨어 구조를 제안한다. 참조 소프트웨어JM16.0과 비교하여 참조 프레임 접근율이 약 24%만큼 감소하고 참조 영역 메모리가 약 46%만큼 감소하였다. 통합 구조는 Verilog HDL로 설계되고 Magnachip 0.18um공정으로 합성한 결과 게이트 수는 약 2,061k 이고 91Mhz로 동작한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.