• Title/Summary/Keyword: Memory Volume

Search Result 282, Processing Time 0.026 seconds

Angular-Spatial Multiplexed Volume Holographic Memory System (각.공간 복합 다중화 체적 홀로그래픽 메모리 시스템)

  • 강훈종;이승현;한종욱;김은수
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.12
    • /
    • pp.75-82
    • /
    • 1998
  • Many multiplexing techniques are proposed for high storage densities in a volume hologram. In this paper, we present a hybrid angularly and spatially multiplexed volume holographic memory system. Multiple holograms are recorded by using reference and object waves with different incident angles and positions that are changed by step motors. A hologram is written by exposing the crystal with recording time schedule to the interference pattern of the object beam and a reference plane wave. Finally, we show experimental results of the storage of three layers of 300 multiplexed holograms in a LiNbO$_3$ : Fe crystal.

  • PDF

P-RAM 기술의 전망

  • Jeong Hong-Sik
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2006.05a
    • /
    • pp.21-40
    • /
    • 2006
  • [ ${\Box}$ ] Opportunities for PRAM Nearly ideal memory characteristics Potential for high density & low cost memory ${\Box}$ Technical Challenges Writing current reduction is the most urgent issue. ${\to}$ chalcogenide, programming volume, current density, heat loss control Improvement of writing speed, reliability ${\Box}$ Prospects (PRAM as a Mainstream Memory) Evenn, We have demonstrated 256Mb PRAM Realization of high density and low cost PRAM with good reliability will be key succss factor. We need to develop PRAM specific applications.

  • PDF

Flexural analysis of thermally actuated fiber reinforced shape memory polymer composite

  • Tiwari, Nilesh;Shaikh, A.A.
    • Advances in materials Research
    • /
    • v.8 no.4
    • /
    • pp.337-359
    • /
    • 2019
  • Shape Memory Polymer Composites (SMPC) have gained popularity over the last few decades due to its flexible shape memory behaviour over wide range of strains and temperatures. In this paper, non-linear bending analysis has been carried out for SMPC beam under the application of uniformly distributed transverse load (UDL). Simplified C0 continuity Finite Element Method (FEM) based on Higher Order Shear Deformation Theory (HSDT) has been adopted for flexural analysis of SMPC. The numerical solutions are obtained by iterative Newton Raphson method. Material properties of SMPC with Shape Memory Polymer (SMP) as matrix and carbon fibre as reinforcements, have been calculated by theory of volume averaging. Effect of temperature on SMPC has been evaluated for numerous parameters for instance number of layers, aspect ratio, boundary conditions, volume fraction of carbon fiber and laminate stacking orientation. Moreover, deflection profile over unit length and behavior of stresses across thickness are also presented to elaborate the effect of glass transition temperature (Tg). Present study provides detailed explanation on effect of different parameters on the bending of SMPC beam for large strain over a broad span of temperature from 273-373K, which encompasses glass transition region of SMPC.

Memory Efficient Parallel Ray Casting Algorithm for Unstructured Grid Volume Rendering on Multi-core CPUs (비정렬 격자 볼륨 렌더링을 위한 다중코어 CPU기반 메모리 효율적 광선 투사 병렬 알고리즘)

  • Kim, Duksu
    • Journal of KIISE
    • /
    • v.43 no.3
    • /
    • pp.304-313
    • /
    • 2016
  • We present a novel memory-efficient parallel ray casting algorithm for unstructured grid volume rendering on multi-core CPUs. Our method is based on the Bunyk ray casting algorithm. To solve the high memory overhead problem of the Bunyk algorithm, we allocate a fixed size local buffer for each thread and the local buffers contain information of recently visited faces. The stored information is used by other rays or replaced by other face's information. To improve the utilization of local buffers, we propose an image-plane based ray grouping algorithm that makes ray groups have high coherency. The ray groups are then distributed to computing threads and each thread processes the given groups independently. We also propose a novel hash function that uses the index of faces as keys for calculating the buffer index each face will use to store the information. To see the benefits of our method, we applied it to three unstructured grid datasets with different sizes and measured the performance. We found that our method requires just 6% of the memory space compared with the Bunyk algorithm for storing face information. Also it shows compatible performance with the Bunyk algorithm even though it uses less memory. In addition, our method achieves up to 22% higher performance for a large-scale unstructured grid dataset with less memory than Bunyk algorithm. These results show the robustness and efficiency of our method and it demonstrates that our method is suitable to volume rendering for a large-scale unstructured grid dataset.

Finite volumes vs finite elements. There is a choice

  • Demirdzic, Ismet
    • Coupled systems mechanics
    • /
    • v.9 no.1
    • /
    • pp.5-28
    • /
    • 2020
  • Despite a widely-held belief that the finite element method is the method for the solution of solid mechanics problems, which has for 30 years dissuaded solid mechanics scientists from paying any attention to the finite volume method, it is argued that finite volume methods can be a viable alternative. It is shown that it is simple to understand and implement, strongly conservative, memory efficient, and directly applicable to nonlinear problems. A number of examples are presented and, when available, comparison with finite element methods is made, showing that finite volume methods can be not only equal to, but outperform finite element methods for many applications.

Migration Policies of a Main Memory Index Structure for Moving Objects Databases

  • An Kyounghwan;Kim Kwangsoo
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.673-676
    • /
    • 2004
  • To manage and query moving objects efficiently in MMDBMS, a memory index structure should be used. The most popular index structure for storing trajectories of moving objects is 3DR-tree. The 3DR-tree also can be used for MMDBMS. However, the volume of data can exceed the capacity of physical memory since moving objects report their locations continuously. To accommodate new location reports, old trajectories should be migrated to disk or purged from memory. This paper focuses on migration policies of a main memory index structure. Migration policies consist of two steps: (i) node selection, (ii) node placement. The first step (node selection) selects nodes that should be migrated to disk. The criteria of selection are the performance of insertion or query. The second step (node placement) determines the order of nodes written to disk. This step can be thought as dynamic declustering policies.

  • PDF

Method of Fast Interpolation of B-Spline Volumes for Reconstructing the Heterogeneous Model of Bones from CT Images (CT 영상에서 뼈의 불균질 모델 생성을 위한 B-스플라인 볼륨의 빠른 보간 방법)

  • Park, Jun Hong;Kim, Byung Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.4
    • /
    • pp.373-379
    • /
    • 2016
  • It is known that it is expedient to represent the distribution of the properties of a bone with complex heterogeneity as B-spline volume functions. For B-spline-based representation, the pixel values of CT images are interpolated by B-spline volume functions. However, the CT images of a bone are three-dimensional and very large, and hence a large amount of memory and long computation time for the interpolation are required. In this study, a method for resolving these problems is proposed. In the proposed method, the B-spline volume interpolation problem is simplified by using the uniformity of pixel spacing of the image and the properties of B-spline basis functions. This results in a reduction in computation time and the amount of memory used. The proposed method was implemented and it was verified that the computation time and the amount of memory used were reduced.

Effect of Cold Rolling on Fatigue Crack Propagation of TiNi/A16061 Shape Memory Composite (TiNi/A16061 형상기억복합재료의 피로균열진전에 대한 냉간압연효과)

  • Lee Jin-Kyung;Park Young-Chul;Lee Kyu-Chang;Lee Sang-Pill;Cho Youn-Ho;Lee Joon-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.10 s.241
    • /
    • pp.1315-1320
    • /
    • 2005
  • TiNi alloy fiber was used to recover the original shape of materials using its shape memory effect. The shape memory alloy plays an important role within the metal matrix composite. The shape memory alloy can control the crack propagation in metal matrix composite, and improve the tensile strength of the composite. In this study, TiNi/A16061 shape memory alloy(SMA) composite was fabricated by hot press method, and pressed by a roller for its strength improvement. The four kinds of specimens were fabricated with $0\%,\;3.2\%,\;5.2\%\;and\;7\%$ and volume fraction of TiNi alloy fiber, respectively. A fatigue test has performed to evaluate the crack initiation and propagation for the TiNi/A16061 SMA composite fabricated by かis method. In order to study the shape memory effect of the TiNi alloy fiber, the test has also done under both conditions of the room temperature and high temperature. The relationship between the crack growth rate and the stress intensity factor was clarified for the composite, and the cold rolling effect was also studied.

A Data Structure for Real-time Volume Ray Casting (실시간 볼륨 광선 투사법을 위한 자료구조)

  • Lim, Suk-Hyun;Shin, Byeong-Seok
    • Journal of the Korea Computer Graphics Society
    • /
    • v.11 no.1
    • /
    • pp.40-49
    • /
    • 2005
  • Several optimization techniques have been proposed for volume ray casting, but these cannot achieve real-time frame rates. In addition, it is difficult to apply them to some applications that require perspective projection. Recently, hardware-based methods using 3D texture mapping are being used for real-time volume rendering. Although rendering speed approaches real time, the larger volumes require more swapping of volume bricks for the limited texture memory. Also, image quality deteriorates compared with that of conventional volume ray casting. In this paper, we propose a data structure for real-time volume ray casting named PERM (Precomputed dEnsity and gRadient Map). The PERM stores interpolated density and gradient vector for quantized cells. Since the information requiring time-consuming computations is stored in the PERM, our method can ensure interactive frame rates on a consumer PC platform. Our method normally produces high-quality images because it is based on conventional volume ray casting.

  • PDF

Electrical Characteristics of PRAM Cell with Nanoscale Electrode Contact Size

  • Nam, Gi-Hyeon;Yun, Yeong-Jun;Maeng, Gwang-Seok;Kim, Gyeong-Mi;Kim, Jeong-Eun;Jeong, Hong-Bae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.282-282
    • /
    • 2011
  • Low power consuming operation of phase-change random access memory (PRAM) can be achieved by confining the switching volume of phase change media into nanometer scale. Ge2Sb2Te5 (GST) is one of the best materials for the phase change random access memory (PRAM) because the GST has two stable states, namely, high and low resistance values, which correspond to the amorphous and crystalline phases of GST, respectively. However, achieving the fast operation speed at lower current requires an alternative chalcogenide material to replace the GST and shrinking the dimension of programmable volume. In this paper, we have fabricated nanoscale contact area on Ge2Sb2Te5 thin films with trimming process. The GST material was fabricated by melt quenching method and the GST thin films were deposited with thickness of 100 nm by the electron beam evaporation system. As a result, the reset current can be safely scaled down by reducing the device contact area and we could confirmed the phase-change characteristics by applying voltage pulses.

  • PDF