• Title/Summary/Keyword: Memory Allocation Mechanism

Search Result 16, Processing Time 0.027 seconds

Symbiotic Dynamic Memory Balancing for Virtual Machines in Smart TV Systems

  • Kim, Junghoon;Kim, Taehun;Min, Changwoo;Jun, Hyung Kook;Lee, Soo Hyung;Kim, Won-Tae;Eom, Young Ik
    • ETRI Journal
    • /
    • v.36 no.5
    • /
    • pp.741-751
    • /
    • 2014
  • Smart TV is expected to bring cloud services based on virtualization technologies to the home environment with hardware and software support. Although most physical resources can be shared among virtual machines (VMs) using a time sharing approach, allocating the proper amount of memory to VMs is still challenging. In this paper, we propose a novel mechanism to dynamically balance the memory allocation among VMs in virtualized Smart TV systems. In contrast to previous studies, where a virtual machine monitor (VMM) is solely responsible for estimating the working set size, our mechanism is symbiotic. Each VM periodically reports its memory usage pattern to the VMM. The VMM then predicts the future memory demand of each VM and rebalances the memory allocation among the VMs when necessary. Experimental results show that our mechanism improves performance by up to 18.28 times and reduces expensive memory swapping by up to 99.73% with negligible overheads (0.05% on average).

Quick Semi-Buddy Scheme for Dynamic Storage Allocation in Real-Time Systems (실시간 시스템에서의 동적 스토리지 할당을 위한 빠른 수정 이진 버디 기법)

  • 이영재;추현승;윤희용
    • Journal of the Korea Society for Simulation
    • /
    • v.11 no.3
    • /
    • pp.23-34
    • /
    • 2002
  • Dynamic storage allocation (DSA) is a field fairly well studied for a long time as a basic problem of system software area. Due to memory fragmentation problem of DSA and its unpredictable worst case execution time, real-time system designers have believed that DSA may not be promising for real-time application service. Recently, the need for an efficient DSA algorithm is widely discussed and the algorithm is considered to be very important in the real-time system. This paper proposes an efficient DSA algorithm called QSB (quick semi-buddy) which is designed to be suitable for real-time environment. QSB scheme effectively maintains free lists based on quick-fit approach to quickly accommodate small and frequent memory requests, and the other free lists devised with adaptation upon a typical binary buddy mechanism for bigger requests in harmony for the .improved performance. Comprehensive simulation results show that the proposed scheme outperforms QHF which is known to be effective in terms of memory fragmentation up to about 16%. Furthermore, the memory allocation failure ratio is significantly decreased and the worst case execution time is predictable.

  • PDF

Preventive Adaption Threshold Mechanism in Buffer Allocation for Shared Memory Buffer (공유 메모리 버퍼에서의 예방적 적응 한계치 버퍼 할당 기법)

  • Shin, Tae-Ho;Lee, Sung-Chang;Lee, Hyeong-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.38 no.10
    • /
    • pp.24-33
    • /
    • 2001
  • Delay, delay variation and packet loss rate are principal QoS(Quality of Service) elements of packet communication. This paper proposes a new buffer allocation mechanism to improve the packet loss performance in such a situation that multiple logical buffers share a single physical memory buffer. In the proposed buffer allocation mechanism, the movement of dynamic threshold follows a curved track instead of a straight line which is used in the DT(dynamic threshold) mechanism. In order evaluate the effectiveness of the proposed mechanism, it is compared with the existing previously proposed mechanisms in several aspects including NC(no control), ST(Static Threshold) and DT mechanisms.

  • PDF

A Reconfigurable Memory Allocation Model for Real-Time Linux System (Real-Time Linux 시스템을 위한 재구성 가능한 메모리 할당 모델)

  • Sihm, Jae-Hong;Jung, Suk-Yong;Kang, Bong-Jik;Choi, Kyung-Hee;Jung, Gi-Hyun
    • The KIPS Transactions:PartA
    • /
    • v.8A no.3
    • /
    • pp.189-200
    • /
    • 2001
  • This paper proposes a memory allocation model for Real-Time Linux. The proposed model allows users to create several continuous memory regions in an application, to specify an appropriate region allocation policy for each memory region, and to request memory blocks from a necessary memory region. Instead of using single memory management module in order to support the proposed model, we adopt two-layered structure that is consisted of region allocators implementing allocation policies and a region manager controlling regions and region allocator modules. This structure separates allocation policy from allocation mechanism, thus allows system developers to implement same allocation policy using different algorithms in case of need. IN addition, it enables them to implement new allocation policy using different algorithms in case of need. In addition, it enables them to implement new allocation policy easily as long as they preserver predefined internal interfaces, to add the implemented policy into the system, and to remove unnecessary allocation policies from the system, Because the proposed model provides various allocation policies implemented previously, system builders can also reconfigure the system by just selecting most appropriate policies for a specific application without implementing these policies from scratch.

  • PDF

An Efficient Memory Allocation Scheme for Space Constrained Sensor Operating Systems (공간 제약적인 센서 운영체제를 위한 효율적인 메모리 할당 기법)

  • Yi Sang-Ho;Min Hong;Heo Jun-Youg;Cho Yoo-Kun;Hong Ji-Man
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.33 no.9
    • /
    • pp.626-633
    • /
    • 2006
  • The wireless sensor networks are sensing, computing and communication infrastructures that allow us to monitor, instrument, observe, and respond to phenomena in the harsh environment. Sensor operating systems that run on tiny sensor nodes are the key to the performance of the distributed computing environment for the wireless sensor networks. Therefore, sensor operating systems should be able to operate efficiently in terms of energy consumption and resource management. In this paper, we present an efficient memory allocation scheme to improve the time and space efficiency of memory management for the sensor operating systems. Our experimental results show that the proposed scheme performs efficiently in both time and space compared with existing memory allocation mechanisms.

An automated memory error detection technique using source code analysis in C programs (C언어 기반 프로그램의 소스코드 분석을 이용한 메모리 접근오류 자동검출 기법)

  • Cho, Dae-Wan;Oh, Seung-Uk;Kim, Hyeon-Soo
    • The KIPS Transactions:PartD
    • /
    • v.14D no.6
    • /
    • pp.675-688
    • /
    • 2007
  • Memory access errors are frequently occurred in C programs. A number of tools and research works have been trying to detect the errors automatically. However, they have one or more of the following problems: inability to detect all memory errors, changing the memory allocation mechanism, incompatibility with libraries, and excessive performance overhead. In this paper, we suggest a new method to solve these problems, and then present a result of comparison to the previous research works through the experiments. Our approach consists of two phases. First is to transform source code at compile time through inserting instrumentation into the source code. And second is to detect memory errors at run time with a bitmap that maintains information about memory allocation. Our approach has improved the error detection abilities against the binary code analysis based ones by using the source code analysis technique, and enhanced performance in terms of both space and time, too. In addition, our approach has no problem with respect to compatibility with shared libraries as well as does not need to modify memory allocation mechanism.

Design of an Automated Testing Tool to Detect Dynamic Memory Access Errors in C Programs (C언어 기반 프로그램의 동적 메모리 접근 오류 테스트 자동화 도구 설계)

  • Cho, Dae-Wan;Oh, Seung-Uk;Kim, Hyeon-Soo
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.8
    • /
    • pp.708-720
    • /
    • 2007
  • Memory access errors are frequently occurred in computer programs written in C programming language [1,2]. Accordingly, a number of research works have suggested a wide variety of methods to detect such errors automatically. However, they have one or more of the following problems: inability to detect all memory errors, changing the memory allocation mechanism, and excessive performance overhead. To cope with these problems, in this paper we suggest a new and automated tool to detect dynamic memory access errors in C programs.

Efficient Memory Update Module for Video Object Segmentation (동영상 물체 분할을 위한 효율적인 메모리 업데이트 모듈)

  • Jo, Junho;Cho, Nam Ik
    • Journal of Broadcast Engineering
    • /
    • v.27 no.4
    • /
    • pp.561-568
    • /
    • 2022
  • Most deep learning-based video object segmentation methods perform the segmentation with past prediction information stored in external memory. In general, the more past information is stored in the memory, the better results can be obtained by accumulating evidence for various changes in the objects of interest. However, all information cannot be stored in the memory due to hardware limitations, resulting in performance degradation. In this paper, we propose a method of storing new information in the external memory without additional memory allocation. Specifically, after calculating the attention score between the existing memory and the information to be newly stored, new information is added to the corresponding memory according to each score. In this way, the method works robustly because the attention mechanism reflects the object changes well without using additional memory. In addition, the update rate is adaptively determined according to the accumulated number of matches in the memory so that the frequently updated samples store more information to maintain reliable information.

An Adaptive Virtual Machine Location Selection Mechanism in Distributed Cloud

  • Liu, Shukun;Jia, Weijia
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.12
    • /
    • pp.4776-4798
    • /
    • 2015
  • The location selection of virtual machines in distributed cloud is difficult because of the physical resource distribution, allocation of multi-dimensional resources, and resource unit cost. In this study, we propose a multi-object virtual machine location selection algorithm (MOVMLSA) based on group information, doubly linked list structure and genetic algorithm. On the basis of the collaboration of multi-dimensional resources, a fitness function is designed using fuzzy logic control parameters, which can be used to optimize search space solutions. In the location selection process, an orderly information code based on group and resource information can be generated by adopting the memory mechanism of biological immune systems. This approach, along with the dominant elite strategy, enables the updating of the population. The tournament selection method is used to optimize the operator mechanisms of the single-point crossover and X-point mutation during the population selection. Such a method can be used to obtain an optimal solution for the rapid location selection of virtual machines. Experimental results show that the proposed algorithm is effective in reducing the number of used physical machines and in improving the resource utilization of physical machines. The algorithm improves the utilization degree of multi-dimensional resource synergy and reduces the comprehensive unit cost of resources.

A File Clustering Algorithm for Wear-leveling (마모도 평준화를 위한 File Clustering 알고리즘)

  • Lee, Taehwa;Cha, Jaehyuk
    • Journal of Digital Contents Society
    • /
    • v.14 no.1
    • /
    • pp.51-57
    • /
    • 2013
  • Storage device based on Flash Memory have many attractive features such as high performance, low power consumption, shock resistance, and low weight, so they replace HDDs to a certain extent. An Storage device based on Flash Memory has FTL(Flash Translation Layer) which emulate block storage devices like HDDs. A garbage collection, one of major functions of FTL, effects highly on the performance and the lifetime of devices. However, there is no de facto standard for new garbage collection algorithms. To solve this problem, we propose File Clustering Algorithm. File Clustering Algorithm respect to update page from same file at the same time. So, these are clustered to same block. For this mechanism, We propose Page Allocation Policy in FTL and use MIN-MAX GAP to guarantee wear leveling. To verify the algorithm in this paper, we use TPC Benchmark. So, The performance evaluation reveals that the proposed algorithm has comparable result with the existing algorithms(No wear leveling, Hot/Cold) and shows approximately 690% improvement in terms of the wear leveling.