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Smart TV is expected to bring cloud services based on 
virtualization technologies to the home environment with 
hardware and software support. Although most physical 
resources can be shared among virtual machines (VMs) 
using a time sharing approach, allocating the proper 
amount of memory to VMs is still challenging. In this 
paper, we propose a novel mechanism to dynamically 
balance the memory allocation among VMs in virtualized 
Smart TV systems. In contrast to previous studies, where 
a virtual machine monitor (VMM) is solely responsible for 
estimating the working set size, our mechanism is 
symbiotic. Each VM periodically reports its memory 
usage pattern to the VMM. The VMM then predicts the 
future memory demand of each VM and rebalances the 
memory allocation among the VMs when necessary. 
Experimental results show that our mechanism improves 
performance by up to 18.28 times and reduces expensive 
memory swapping by up to 99.73% with negligible 
overheads (0.05% on average). 
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I. Introduction 

Google released Smart TV in 2010. Since then, major 
manufacturers, such as Samsung, LG, and Sony, have invested 
in the development of Smart TV products. This trend shows 
that the TV has been transformed from a home appliance 
handling only broadcast media, to a full technology system that 
provides other valuable services, such as web browsing, online 
gaming, video streaming, and other Internet-based content [1]. 
Due to the paradigm shift toward the TV becoming a software-
centric system, we expect that next-generation Smart TV 
systems will become ubiquitous in home environments by 
introducing cloud services based on virtualization technologies 
[2]–[3]. This is supported by the following hardware and 
software trends. First, the improvement of hardware 
performance has been accelerated (for example, multicore 
processors, 3D acceleration, high-speed networks, and various 
interfaces). Moreover, ARM processors, which are mainly used 
in embedded devices, now support hardware virtualization 
technologies [4]. Second, software solutions for supporting 
virtualized environments in embedded devices have been 
significantly studied [5]–[8]. 

In virtualized Smart TV systems, where a virtual machine 
monitor (VMM) is responsible for allocating physical 
resources to virtual machines (VMs), efficient resource 
management is a key success factor [9]. Even though most 
physical resources, such as a CPU and I/O devices, can be 
shared by multiplexing among VMs, allocating the proper 
amount of memory to VMs is still challenging [10]–[11]. 
Simply increasing the physical memory seems an easy solution. 
However, in embedded devices, such as a Smart TV, the 
installation of larger physical memory chips entails higher 
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material cost and power consumption, so it deteriorates the 
competitiveness of products. To efficiently share the memory 
resource among VMs, previous studies have proposed 
dynamic memory balancing techniques while maintaining a 
reasonable quality of service (QoS). However, these techniques 
still have limitations. Statistical sampling [12] cannot estimate a 
memory demand larger than the current memory allocated to 
the VM. In addition, by increasing the number of sampling 
pages for the high estimation accuracy, the monitoring 
overhead linearly increases. Geiger [13] proposed techniques 
that can predict the page miss ratio and determine appropriate 
VM memory allocation by intercepting all I/O operations at the 
VMM level. However, it cannot estimate the working set size 
of a VM (that is, the amount of machine memory needed 
without causing significant memory swapping) smaller than its 
current memory allocation because, as in this case, it does not 
incur the buffer cache eviction. To cope with such limitation, 
Lu and Shen [14] proposed a hypervisor exclusive cache 
technique that can determine the growth and shrinkage of 
memory allocation. However, this technique cannot be used for 
an operating system (OS) without a source code, since it 
requires modification of the guest kernel. Zhao and others [10] 
and virtual machine memory balancer (VMMB) [11] proposed 
a least recently used (LRU) histogram–based [15] approach for 
estimating the working set size of each VM. They divided the 
VM memory into several sets, whereby a particular set is 
monitored for estimating the working set size of each VM. 
However, a workload that heavily accesses the memory causes 
a large monitoring overhead due to the frequent histogram 
updates. Furthermore, intercepting memory accesses involves 
mode switching between the VM and the VMM, which is the 
most expensive operation in virtualized environments [16]–[19]. 

In this paper, we propose a novel mechanism to dynamically 
balance the memory allocation among VMs. In contrast to 
previous studies, where a VMM is solely responsible for 
estimating and rebalancing the memory allocation, our 
approach is symbiotic. Each VM periodically reports its 
memory usage pattern to the VMM. Then, the VMM simply 
calculates the memory demands from the collected memory 
usage patterns and rebalances the memory allocation among 
the VMs. Our symbiotic approach is particularly useful for 
resource-limited embedded devices, such as Smart TVs, since 
it has a low runtime overhead regardless of workloads. We 
made the following specific contributions: 
■ First, we classify the representative workloads of a Smart TV 
and characterize the properties of each workload. On the basis 
of the analysis, we verify that the lack of runtime information 
of VMs within the VMM, called a semantic gap, incurs 
expensive memory swapping in the virtualized Smart TV 
system because the inactive memory of VMs is unable to be 

efficiently reclaimed. This result shows that dynamic memory 
balancing is essential for virtualized Smart TV systems.  
■ Second, we propose a novel and simple technique for 
obtaining memory usage patterns from VMs. Compared to 
previous studies that attempt to determine VM semantics for 
estimation of the working set size, our mechanism predicts the 
memory demands based on the memory usage patterns 
provided by the VMs. To do this, a monitor driver, which runs 
in a guest kernel, periodically posts memory usage information 
of a VM to the VMM. This can be performed without 
modification of the guest kernel because the monitor driver is a 
typical loadable driver (for example, a balloon driver [12]). 
Therefore, our mechanism accurately measures the working set 
of each VM with negligible overhead regardless of the working 
set size and memory access pattern of workloads. 
■ Finally, we propose a novel technique to predict the memory 
demand of each VM dynamically based on exponentially-
weighted moving averages [20]. This technique can predict the 
memory demand, whether or not each VM will require a 
memory resource larger than the current allocation. Therefore, 
our mechanism can prevent expensive memory swapping in 
advance and improve overall performance. 

The remainder of the paper is organized as follows. Section 
II analyzes Smart TV workloads and describes the memory 
management problem in a virtualized Smart TV system. In 
Section III, we describe the detailed design of our dynamic 
memory balancing mechanism. In Section IV, we show 
experimental results of our mechanism and verify that our 
mechanism is practical in a virtualized Smart TV system by 
comparing with previous studies. Section V presents the related 
work. Finally, in Section VI, we conclude the paper and 
suggest future directions. 

II. Analysis of Smart TV Workloads 

Smart TV has changed the function of the TV by providing 
various services such as video playback, web browsing, video 
streaming, and online gaming. For this reason, an analysis of 
Smart TV workloads should be conducted first to provide 
efficient memory management in a virtualized Smart TV 
system. In this section, we analyze memory usage patterns of 
the representative workloads in Smart TV. We then show why 
efficient memory management is essential for a virtualized 
Smart TV system.  

1. Memory Usage Patterns of Smart TV Workloads 

We first analyze four representative workloads in Smart TV, 
including video playback, video streaming, web browsing, and 
online gaming. Details of each workload are as follows. In the 
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Fig. 1. Memory usage patterns of Smart TV workloads: (a) video playback, (b) video streaming, (c) web browsing, and (d) online game.
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case of the video playback workload, we played 1,080p high-
definition videos using the XBMC player [21], which is a 
media center platform of the Xbox game player. In the case of 
the video streaming workload, we opened a web browser and 
played arbitrary videos from YouTube [22]. In the case of the 
web browsing workload, we opened a web browser and 
searched arbitrary keywords. In the case of the online gaming 
workload, we played Nexuiz [23], which is a high-quality FPS 
game. All experiments were performed on a Linux-based 
system (see Section IV for the detailed description of the 
environment). 

To analyze these workloads accurately, we measured 
memory usage, including active page cache, inactive page 
cache, active anonymous page, inactive anonymous page, and 
free page, from the OS performance statistics each second. 
Page cache acts as a transparent cache for disk-backed pages, 
and it is kept in the main memory for fast access. Anonymous 
page, which does not map a file on the disk, is usually used for 
the process’s stack or heap area. The OS categorizes the pages 
in use into two lists: the active list and the inactive list. Pages on 
the active list are considered hot data and are not available for 
eviction. On the other hand, pages on the inactive list are 
considered cold data and can be evicted. 

Figure 1 shows the memory usage pattern of each workload. 
As shown in Fig. 1(a), the video playback workload increases 
the active anonymous page at the beginning of the playback for 
running the XBMC player. Until the free memory is exhausted, 
the inactive page cache then continues to increase. This is 
because the OS caches as much data from the disk as possible 
to minimize slow disk I/O operations. Figure 1(b) shows the 

memory usage pattern of the video streaming workload. We 
found that the active anonymous page increased during 
streaming or changing video content due to the buffered data. 
In the case of the web browsing workload, as shown in     
Fig. 1(c), the active anonymous page increased whenever we 
tried to search a new keyword. Figure 1(d) shows the memory 
usage pattern of the online game workload. A large amount of 
memory is required at the beginning of loading the data. After 
all data is loaded, extra memory is required only when the 
stage steps up to the next level. 

In summary, the video playback and online game workloads 
continuously spend the memory resource during the entire 
playing duration. On the other hand, the video streaming and 
web browsing workloads require the memory resource in 
accordance with the user requests. 

2. Semantic Gap in Virtualized Smart TV Systems 

To verify the problem of the semantic gap in the virtualized 
Smart TV systems, we played the video and online game 
simultaneously in both a native and a virtualized Smart TV 
system. In the experiments, the memory allocation for each 
VM is configured as 512 MB of 2 GB physical memory. 
Figure 2(a) shows the memory usage pattern in the native 
Smart TV system. When we played the video, the OS started to 
cache as much data as possible. As a result, the inactive page 
cache, which is regarded as less likely to be reused, rapidly 
increased (Fig. 1(a)). The reason for the memory usage pattern 
of the inactive page cache is that the video playback workload 
reads data sequentially and the data is never accessed again. 
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Fig. 2. Problem of memory resource management in virtualized Smart TV system: (a) native system and (b) virtualized system. 
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Then, when we played the online game, the OS reclaimed the 
inactive page cache efficiently to allocate the anonymous page 
for the online game workload. Thus, expensive memory 
swapping did not occur.  

We performed the same experiment in the virtualized Smart 
TV system, as shown in Fig. 2(b). The video playback 
workload runs in VM1, and the online game workload runs in 
VM2. In the virtualized Smart TV system, the VMM suffers 
from lack of runtime information of VMs, called the semantic 
gap. Thus, when VM2 started playing the online game, the 
VMM could not reclaim the inactive page cache of VM1 and 
incurred expensive memory swapping by up to 300 MB in 
VM2 as a result. Note that if the VMM efficiently reclaimed 
more than 100 MB of the inactive page cache from VM1, then 
we could minimize memory swapping in advance. When there 
are few VMs that heavily use the inactive page cache, this 
problem becomes more critical. This result shows that dynamic 
memory balancing is essential for virtualized Smart TV 
systems. 

III. System Design 

In this section, we first describe the overall architecture of 
our system. We then describe the three design issues of our 
mechanism: (a) monitoring the memory usage patterns of VMs 
with negligible overhead regardless of the characteristics of 
workloads, (b) a technique for predicting the memory demand 
of each VM, and (c) dynamic memory balancing based on the 
results of the prediction. 

1. System Overview 

The proposed mechanism consists of three parts, as shown in 
Fig. 3. First, a monitor driver collects the memory usage 
pattern of a VM from the OS performance statistics and 
periodically updates it to a shared buffer. Second, whenever 
new information is updated, a predictor calculates δ and R, 
which represent the amount of required and reclaimable  

 

Fig. 3. System architecture. 
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memory per VM, respectively. Finally, when the VMM 
decides to rebalance the memory allocation among VMs, the 
VMM uses the ballooning technique [12]; a balancer inflates or 
deflates the balloon in a VM to change the memory allocation 
of the VM. Further detailed design of our mechanism is as 
follows. 

2. Monitoring Memory Usage Patterns of VMs 

As shown in the previous section, the memory usage patterns, 
such as the amount of page cache, anonymous pages, and 
swap-out pages, differ somewhat from workloads. However, 
memory management in the VMM is fundamentally limited 
due to the semantic gap between the VMM and the VM. The 
VMM considers all the VM memory as anonymous pages. 
Therefore, the VMM cannot make efficient decisions to adjust 
memory allocation in VMs and hence incurs expensive 
memory swapping in virtualized Smart TV systems. In 
previous studies, attempts have been made to estimate a 
working set size of each VM within a VMM by intercepting 
memory access [10]–[12] or tracing the buffer cache eviction 
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[13]–[14] so as to accurately balance the memory allocation. 
However, whenever this operation is triggered, the mode 
switching between the VM and the VMM causes a large 
overhead. In addition, the estimated working set size is not 
completely accurate. 

We propose an efficient technique for monitoring the 
memory usage patterns of VMs. Instead of estimating the 
working set size of VMs, the VMM obtains the memory usage 
patterns of VMs through a monitor driver interface. The 
monitor driver runs in a guest kernel for posting this 
information periodically. It does not require modification of the 
guest kernel because the monitor driver is a typical loadable 
driver. The posted information includes the amount of active 
anonymous pages, active page cache, inactive page cache, free 
pages, and swap-out pages. The amount of active anonymous 
pages and active page cache indicates the memory actively in 
use, such as the working set size. Other information is used for 
predicting the memory demands and rebalancing the memory 
allocation among VMs. By using OS performance statistics in 
the VM, the VMM can obtain accurate information with 
negligible overhead regardless of the working set size and 
memory access pattern of workloads. 

3. Prediction of Memory Demand per VM 

To dynamically balance the memory allocation among VMs, 
the VMM needs to determine the working set size per VM. 
The VMM already knows the amount of memory actively in 
use (as described in Section III-2). However, to prevent 
expensive memory swapping in advance, the VMM needs to 
estimate the future memory demand. 

To do this, we propose a novel technique that predicts the 
memory demand of each VM based on the exponentially-
weighted moving average [20]. We define δ as the memory 
demand, whether or not each VM will require more memory. 
When updating the memory usage pattern of VMi at the t-th 
interval, the predictor calculates t

i  as follows: 

   ,t t t t
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not immediately reclaimable because most OSs, such as Linux, 
BSD Unix, and Windows, maintain a minimum amount of free 
memory to handle sudden memory allocation requests [12]. 

4. Dynamic Memory Balancing 

Based on the results of prediction, the VMM balances the 
memory allocation among VMs dynamically. A balancer 
checks the δ and R of each VM at every interval. When the 
balancer detects VMk, of which t
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VMM decides to balance the memory allocation among VMs 
because there is a possibility of memory swapping. To prevent 
swap-out operations, the VMM asks the other VMs to return 
their reclaimable memory to the VMM. If the balancer detects 
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Equation (4) represents a reclaiming formula. The amount of 
reclaimed memory from VMi to the VMM at the t-th interval is 
represented by t

iS . Let there be n VMs that have reclaimable 
memory (that is, t

iR  is greater than t
i ). In this case, it is 

possible to reclaim the difference between t
iR  and t

i  by the 
VMM. If the sum of the differences is larger than t

k , then the 
VMM reclaims the memory proportionally to the difference of  
 

Table 1. Description of variables. 

Variable Description 

t
iM  Variation of required memory in VMi at the t-th interval 

t
i  Predicted memory demand in VMi at the t-th interval 

t
iR  Amount of reclaimable memory in VMi at the t-th interval 

t
iS  

Amount of reclaimed memory from VMi to the VMM at the 
t-th interval 
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each VM. Otherwise, only the sum of differences is reclaimed by 
the VMM. Table 1 shows a summary of the variables used in our 
mechanism. 

IV. Evaluation 

Our system is implemented using the KVM [24] VMM. 
Linux kernel 3.7.10 is used for guest and host OSs. In our 
prototype implementation, the memory usage updating interval 
is set to one second. All experiments were performed on a 
system with a 2.8 GHz Intel Core i7 processor and 2 GB of 
physical memory. 

In this section, we show the evaluation results of our 
mechanism. First, we show experimental results of the 
proposed technique for predicting the memory demand of each 
VM. We then evaluate the overhead of our mechanism 
compared to prior work. Lastly, we evaluate the effectiveness 
of memory balancing through various workloads. 

1. Memory Demand Prediction 

Figures 4 and 5 show the experimental results of our 
prediction technique measured using the web browsing and 
online game workloads, respectively. We compare the 
predicted memory demand with an actual memory demand, 
changing the value of ; a constant used in the prediction. In the 
prediction technique, the more the value of  increases, the 
more t

iM , which is the variation of required memory at the  
t-th interval, is reflected. On the contrary, the more the value of 
 decreases, the more 1,t

i
  which is the cumulative memory  

 

demand, is closely reflected. 
When the value of  is 0.25, as shown in Figs. 4(a) and 5(a), 

our prediction technique passively reflects the recent variation 
of required memory; thus, the risk of memory swapping is high. 
Meanwhile, the more the value of  increases, the more the 
prediction technique reflects the recent variation of required 
memory; thus, this decreases the risk of memory swapping. 
Figures 4(d) and 5(d) present the most aggressive policy for 
preventing expensive memory swapping. However, the 
memory resource is wasted in a VM whose actual memory 
demand changes frequently and whose gap between minimum 
and maximum memory demand is high. In addition, when few 
VMs show this memory demand pattern, the VMM balances 
the memory allocation among VMs unnecessarily. Therefore, 
we set 0.75 as the value of  in our prototype implementation. 

2. System Overhead 

For our mechanism to be practical in virtualized Smart TV 
systems, its overhead should be minimal, regardless of the 
characteristics of workloads. In the experiments, we use the 
SPEC CPU 2000 [25] benchmark suite for comparing the 
performance overhead with previous studies. To evaluate the 
monitoring overhead of our mechanism, we measure the 
execution time of SPEC 2000 workloads with only the monitor 
driver and predictor enabled. 

As shown in Table 2, the average overhead of our system is 
negligible: 0.05% for SPEC 2000, compared with 2.13% in 
Zhao and others’ method [10] and 0.67% in VMMB [11]. 
More importantly, all measured overheads of SPEC 2000 
 

 

Fig. 4. Memory demand prediction of web browsing workload: (a)  = 0.25, (b)  = 0.5, (c)  = 0.75, and (d)  = 1. 
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Fig. 5. Memory demand prediction of online game workload: (a)  = 0.25, (b)  = 0.5, (c)  = 0.75, and (d)  = 1.  
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Table 2. Monitoring overhead of SPEC 2000 workloads. 

Workload Monitoring overhead (%) 

164.gzip 0.05 

175.vpr 0.06 

176.gcc 0.05 

181.mcf 0.04 

186.crafty 0.07 

197.parser 0.05 

252.eon 0.06 

253.perlbmk 0.05 

254.gap 0.05 

255.vortex 0.05 

256.bzip2 0.06 

300.twolf 0.06 

Average 0.05 

 

 
workloads are equal within the margin of error because our 
mechanism is not affected by the working set size and memory 
access pattern of the workloads. For example, the overhead of 
a memory intensive workload such as 181.mcf is 0.04% in our 
mechanism. On the contrary, the runtime overhead of Zhao and 
others’s method [10] and VMMB [11] are not negligible, and 
are as much as 24% and 1.65%, respectively. When there are 
few VMs running a workload with a large working set, the 
monitoring overhead becomes more critical. This result shows 
that our mechanism effectively obtains memory usage 
information of various workloads. 

 

Fig. 6. Performance of workloads in VM1. 
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3. Effectiveness of Memory Balancing 

We evaluate how efficiently our mechanism balances the 
memory allocation among VMs and how this impacts the 
overall performance of a virtualized Smart TV system. We 
measure the performance of VM1, which runs selected 
workloads in the SPEC CPU 2006 [26] benchmark suite, and 
the online game for realistic workload, while VM2 and VM3 
run the video playback and the web browsing workloads, 
respectively, in the background. 

Figure 6 shows the performance of workloads in VM1. 
Baseline is the performance through static partitioning that 
allocates 512 MB of memory for each. Best case is the 
performance when we run a VM with 1,536 MB of memory. 
This represents the ideal performance, because no CPU and 
cache contentions occur, and sufficient memory is provided for 
preventing memory swapping. Balanced is the performance 
through our balancing mechanism. In the experimental results, 
the performance of workloads such as 400.perlbench, 403.gcc, 
433.milc, and the online game are boosted by up to 18.28 times  
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Fig. 7. Representative results of variation of allocated memory
among VMs: (a) 400.perlbench, (b) 403.gcc, (c) 433.milc,
and (d) 464.h264ref. 
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Table 3. Reduced amount of memory swapping. 

Category Workload Reduced amount (%) 

400.perlbench 83.89 

403.gcc 97.03 

433.milc 99.73 

456.hmmer - 

462.libquantum - 

464.h264ref - 

471.omnetpp - 

VM1 

Online game 88.93 

VM2 Video playback - 

VM3 Web browsing - 

 

 
compared with Baseline. Among these workloads, the 
performance gains of 403.gcc, 433.milc, and the online game 
are close to Best case. On the other hand, 400.perlbench 
shows relatively less performance improvement. In the case of 
workloads such as 456.hmmer, 462.libquantum, 464.h264ref, 
and 471.omnetpp, no significant difference is observed in the 
performance among Baseline, Best case, and Balanced. 

To analyze the experimental results, we measure the 
allocated memory among VMs over time. Figure 7 shows the 
representative results of the variation of allocated memory 
among VMs. As shown in Fig. 7(a), Fig. 7(b), and Fig. 7(c), the 
VMM gives more memory to VM1, which runs the memory 
intensive workloads with a large working set. This is because 
our mechanism predicts the memory demand of each VM 
accurately and balances the memory among VMs dynamically. 
On the contrary, no memory rebalancing is observed in     
Fig. 7(d). This is because our mechanism only balances the 
memory allocation on demand when there is a possibility of 
memory swapping. This helps to reduce memory thrashing, 
whereby unnecessary balancing arises from a workload in 
which the actual memory demand increases and decreases 
frequently. 

To further analyze the experimental results, we measure the 
amount of memory swapping in each VM. Table 3 shows the 
reduced amount of memory swapping, compared with 
Baseline. We found that our mechanism prevents expensive 
memory swapping by up to 99.73% by giving more memory 
to VM1. Also, we found that no memory swapping occurs in 
VM2 and VM3. This shows that our mechanism efficiently 
predicts the required and reclaimable memory of VMs and that 
the VMM reclaims the memory from VM2 and VM3 without 
performance degradation. In the case of 400.perlbench, the 
reduced amount of memory swapping is relatively small. Thus, 
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relatively less performance improvement is shown in Fig. 6. 
This is because little memory resource is required with a 
repeated pattern, as shown in Fig. 7(a). If we increase the value 
of  by more than 0.75 in our prototype implementation, then the 
prediction technique reflects the recent variation of the required 
memory more aggressively and the performance improvement of 
400.perlbench will be better. However, this may lead to 
performance degradation in other VMs due to overestimation. 
Thus, when determining the value of , the administrator should 
consider the QoS requirements of individual VMs that have 
different importance factors. 

V. Related Work 

Our mechanism can greatly reduce the amount of memory 
swapping by predicting the memory demand of each VM 
efficiently and rebalancing the memory allocation among VMs 
dynamically. In this regard, this section briefly presents the 
existing technologies that are most closely related to our work 
and compares them to our mechanism. 

First, Waldspurger [12] proposed a statistical sampling 
approach to estimate the working set size of a VM. During a 
configurable sample period, a small number of randomly 
selected pages are monitored, whether or not they are accessed. 
At the end of the sample period, the fraction of accessed pages 
over selected pages is considered as the VM working set. 
However, a working set size larger than that currently allocated 
memory to a VM cannot be estimated. If the VM begins to 
thrash, the sampling technique simply reports the working set 
size, which is 100% of the currently allocated memory to the 
VM. Thus, as in this case, a trial and error approach is required 
for VMM to determine the working set size. To do this, the 
VMM repeatedly gives more memory to the VM until it drops 
below 100%. However, if physical memory is not available, 
even this trial and error approach will fail. Thus, a brute-force 
approach may be needed in this scenario. In addition, as the 
number of sampling pages increases for the high accuracy of 
estimation, the monitoring overhead linearly increases. The 
sampling rate is shown in the tradeoff between overhead and 
accuracy. In contrast, we exploit a symbiotic approach to 
predict the future memory demand of each VM. Thus, our 
mechanism can estimate the working set size larger than the 
currently allocated memory to the VM with negligible 
monitoring overhead. 

Second, the ghost buffer technique [13]–[14], [27]–[28], has 
been proposed to predict a page miss ratio under a different 
memory resource provisioning. Geiger [13] proposed a 
technique that monitors the buffer cache in virtualized 
environments. This technique monitors the buffer cache 
eviction and promotion by intercepting all I/O operations at the 

VMM level. Through this, the technique can predict the page 
miss ratio and determine appropriate VM memory allocation. 
However, it cannot estimate the working set of a VM smaller 
than its current memory allocation because, as in this case, it 
does not incur the buffer cache eviction. To cope with such a 
limitation, Lu and Shen [14] proposed a technique whereby the 
VMM takes over the management for part of the VM memory; 
thus, all accesses can be transparently traced by the VMM. 
Through this, the growth and the shrinkage of memory 
allocation can be determined. However, this technique cannot 
be used for an OS without source code, since it requires 
modification of the guest kernel. In contrast, our mechanism 
can estimate the working set of a VM smaller than its current 
memory allocation and efficiently reclaims the VM memory 
when necessary. Furthermore, our mechanism does not require 
modification of the guest kernel because the monitor driver is a 
typical loadable driver. 

Third, Zhao and others [10] proposed an LRU histogram–
based [15] approach for estimating the working set size of each 
VM. This approach divides the VM memory into two sets: a 
hot page set and a cold page set. Then, only the cold page set is 
monitored for reducing runtime overhead. However, a 
workload that heavily accesses the memory causes a large 
monitoring overhead due to frequent histogram updates. To 
address this problem, VMMB [11] proposed a weighted red–
black tree and an adaptive resizing technique. However, it can 
still run the risk of increasing the monitoring overhead in 
accordance with the memory access pattern of workloads. Also, 
this technique incurs expensive mode switching between the 
VM and the VMM whenever the VM memory accesses. In 
contrast, we fully exploit OS performance statistics to obtain 
the memory usage patterns of VMs. Thus, our mechanism has 
negligible runtime overhead regardless of the characteristics of 
workloads. 

Lastly, Salomie and others [29] proposed a technique, called 
application-level ballooning (ALB), for rebalancing the 
memory allocation among a collection of applications that 
manage their own memory, such as databases and language 
runtimes. ALB coordinates application, guest OS, and VMM 
for optimizing the use of the memory pool to maximize 
performance. This approach differs from ours in that ALB can 
only be used for specific applications that manage the memory 
resource themselves. Tesseract [30] and VSWAPPER [31] 
explored the behavior of uncooperative memory swapping, 
which is considered a necessary evil in the virtualized 
environments, and proposed their solutions. Tesseract [30] 
directly addresses the double-paging problem, which occurs 
when the VM attempts to page out memory that has previously 
been swapped out by the VMM, and VSWAPPER [31] 
describes some more cases. We view their solutions as 
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complementary to our mechanism. 

VI. Conclusion 

In the near future, Smart TV systems will become ubiquitous 
in home environments through the introduction of cloud 
services based on virtualization technologies. To achieve this, 
efficient memory resource management is a key success factor 
in virtualized Smart TV systems. In this paper, we proposed a 
novel mechanism to dynamically balance the memory 
allocation among VMs in a virtualized Smart TV system by 
reflecting the characteristics of Smart TV workloads. The 
VMM obtains the memory usage patterns from VMs with 
negligible overhead and predicts the memory demand of each 
VM for preventing memory swapping in advance. Then, based 
on the predicted memory demands, the VMM rebalances the 
memory allocation among the VMs. Experimental results 
show that our mechanism is a practical solution for dynamic 
memory balancing in next-generation Smart TV systems. As 
future work, we plan to extend our mechanism for integration 
with QoS requirements of individual VMs that have different 
importance factors. 
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