

ETRI Journal, Volume 36, Number 5, October 2014 © 2014 Junghoon Kim et al. 741
http://dx.doi.org/10.4218/etrij.14.2214.0038

Smart TV is expected to bring cloud services based on
virtualization technologies to the home environment with
hardware and software support. Although most physical
resources can be shared among virtual machines (VMs)
using a time sharing approach, allocating the proper
amount of memory to VMs is still challenging. In this
paper, we propose a novel mechanism to dynamically
balance the memory allocation among VMs in virtualized
Smart TV systems. In contrast to previous studies, where
a virtual machine monitor (VMM) is solely responsible for
estimating the working set size, our mechanism is
symbiotic. Each VM periodically reports its memory
usage pattern to the VMM. The VMM then predicts the
future memory demand of each VM and rebalances the
memory allocation among the VMs when necessary.
Experimental results show that our mechanism improves
performance by up to 18.28 times and reduces expensive
memory swapping by up to 99.73% with negligible
overheads (0.05% on average).

Keywords: Smart TV system, virtual machine, memory
balancing, semantic gap, memory swapping.

Manuscript received Jan. 29, 2014; revised May 12, 2014; accepted May 29, 2014.
This work was supported by the IT R&D Program of MKE/KEIT [10035708, The

Development of CPS (Cyber-Physical Systems) Core Technologies for High Confidential
Autonomic Control Software].

Junghoon Kim (myhuni20@skku.edu), Changwoo Min (multics69@skku.edu), and Young
Ik Eom (corresponding author, yieom@skku.edu) are with the College of Information and
Communication Engineering, Sungkyunkwan University, Suwon, Rep. of Korea.

Taehun Kim (taehun.kim@navercorp.com) is with the System Operations Center, Naver
Business Platform, Seongnam, Rep. of Korea.

Hyung Kook Jun (hkjun@etri.re.kr), Soo Hyung Lee (soohyung@etri.re.kr), and Won-Tae
Kim (wtkim@etri.re.kr) are with the SW·Content Research Laboratory, ETRI, Daejeon, Rep.

of Korea.

I. Introduction

Google released Smart TV in 2010. Since then, major
manufacturers, such as Samsung, LG, and Sony, have invested
in the development of Smart TV products. This trend shows
that the TV has been transformed from a home appliance
handling only broadcast media, to a full technology system that
provides other valuable services, such as web browsing, online
gaming, video streaming, and other Internet-based content [1].
Due to the paradigm shift toward the TV becoming a software-
centric system, we expect that next-generation Smart TV
systems will become ubiquitous in home environments by
introducing cloud services based on virtualization technologies
[2]–[3]. This is supported by the following hardware and
software trends. First, the improvement of hardware
performance has been accelerated (for example, multicore
processors, 3D acceleration, high-speed networks, and various
interfaces). Moreover, ARM processors, which are mainly used
in embedded devices, now support hardware virtualization
technologies [4]. Second, software solutions for supporting
virtualized environments in embedded devices have been
significantly studied [5]–[8].

In virtualized Smart TV systems, where a virtual machine
monitor (VMM) is responsible for allocating physical
resources to virtual machines (VMs), efficient resource
management is a key success factor [9]. Even though most
physical resources, such as a CPU and I/O devices, can be
shared by multiplexing among VMs, allocating the proper
amount of memory to VMs is still challenging [10]–[11].
Simply increasing the physical memory seems an easy solution.
However, in embedded devices, such as a Smart TV, the
installation of larger physical memory chips entails higher

Symbiotic Dynamic Memory Balancing for
 Virtual Machines in Smart TV Systems

Junghoon Kim, Taehun Kim, Changwoo Min, Hyung Kook Jun, Soo Hyung Lee,
Won-Tae Kim, and Young Ik Eom

742 Junghoon Kim et al. ETRI Journal, Volume 36, Number 5, October 2014
http://dx.doi.org/10.4218/etrij.14.2214.0038

material cost and power consumption, so it deteriorates the
competitiveness of products. To efficiently share the memory
resource among VMs, previous studies have proposed
dynamic memory balancing techniques while maintaining a
reasonable quality of service (QoS). However, these techniques
still have limitations. Statistical sampling [12] cannot estimate a
memory demand larger than the current memory allocated to
the VM. In addition, by increasing the number of sampling
pages for the high estimation accuracy, the monitoring
overhead linearly increases. Geiger [13] proposed techniques
that can predict the page miss ratio and determine appropriate
VM memory allocation by intercepting all I/O operations at the
VMM level. However, it cannot estimate the working set size
of a VM (that is, the amount of machine memory needed
without causing significant memory swapping) smaller than its
current memory allocation because, as in this case, it does not
incur the buffer cache eviction. To cope with such limitation,
Lu and Shen [14] proposed a hypervisor exclusive cache
technique that can determine the growth and shrinkage of
memory allocation. However, this technique cannot be used for
an operating system (OS) without a source code, since it
requires modification of the guest kernel. Zhao and others [10]
and virtual machine memory balancer (VMMB) [11] proposed
a least recently used (LRU) histogram–based [15] approach for
estimating the working set size of each VM. They divided the
VM memory into several sets, whereby a particular set is
monitored for estimating the working set size of each VM.
However, a workload that heavily accesses the memory causes
a large monitoring overhead due to the frequent histogram
updates. Furthermore, intercepting memory accesses involves
mode switching between the VM and the VMM, which is the
most expensive operation in virtualized environments [16]–[19].

In this paper, we propose a novel mechanism to dynamically
balance the memory allocation among VMs. In contrast to
previous studies, where a VMM is solely responsible for
estimating and rebalancing the memory allocation, our
approach is symbiotic. Each VM periodically reports its
memory usage pattern to the VMM. Then, the VMM simply
calculates the memory demands from the collected memory
usage patterns and rebalances the memory allocation among
the VMs. Our symbiotic approach is particularly useful for
resource-limited embedded devices, such as Smart TVs, since
it has a low runtime overhead regardless of workloads. We
made the following specific contributions:
■ First, we classify the representative workloads of a Smart TV
and characterize the properties of each workload. On the basis
of the analysis, we verify that the lack of runtime information
of VMs within the VMM, called a semantic gap, incurs
expensive memory swapping in the virtualized Smart TV
system because the inactive memory of VMs is unable to be

efficiently reclaimed. This result shows that dynamic memory
balancing is essential for virtualized Smart TV systems.
■ Second, we propose a novel and simple technique for
obtaining memory usage patterns from VMs. Compared to
previous studies that attempt to determine VM semantics for
estimation of the working set size, our mechanism predicts the
memory demands based on the memory usage patterns
provided by the VMs. To do this, a monitor driver, which runs
in a guest kernel, periodically posts memory usage information
of a VM to the VMM. This can be performed without
modification of the guest kernel because the monitor driver is a
typical loadable driver (for example, a balloon driver [12]).
Therefore, our mechanism accurately measures the working set
of each VM with negligible overhead regardless of the working
set size and memory access pattern of workloads.
■ Finally, we propose a novel technique to predict the memory
demand of each VM dynamically based on exponentially-
weighted moving averages [20]. This technique can predict the
memory demand, whether or not each VM will require a
memory resource larger than the current allocation. Therefore,
our mechanism can prevent expensive memory swapping in
advance and improve overall performance.

The remainder of the paper is organized as follows. Section
II analyzes Smart TV workloads and describes the memory
management problem in a virtualized Smart TV system. In
Section III, we describe the detailed design of our dynamic
memory balancing mechanism. In Section IV, we show
experimental results of our mechanism and verify that our
mechanism is practical in a virtualized Smart TV system by
comparing with previous studies. Section V presents the related
work. Finally, in Section VI, we conclude the paper and
suggest future directions.

II. Analysis of Smart TV Workloads

Smart TV has changed the function of the TV by providing
various services such as video playback, web browsing, video
streaming, and online gaming. For this reason, an analysis of
Smart TV workloads should be conducted first to provide
efficient memory management in a virtualized Smart TV
system. In this section, we analyze memory usage patterns of
the representative workloads in Smart TV. We then show why
efficient memory management is essential for a virtualized
Smart TV system.

1. Memory Usage Patterns of Smart TV Workloads

We first analyze four representative workloads in Smart TV,
including video playback, video streaming, web browsing, and
online gaming. Details of each workload are as follows. In the

ETRI Journal, Volume 36, Number 5, October 2014 Junghoon Kim et al. 743
http://dx.doi.org/10.4218/etrij.14.2214.0038

Fig. 1. Memory usage patterns of Smart TV workloads: (a) video playback, (b) video streaming, (c) web browsing, and (d) online game.

Time (sec)

0

200

400

600

800

1,000

1,200

1,400

1,600

0 100 200 300 400 500 600 700 800

Active page cache Inactive page cache
Active anonymous page Inactive anonymous page
Free page

M
em

or
y

(M
B

)

TerminationPlayback

(a)

0

100

200

300

400

500

600

0 50 100 150 200 250 300 350 400 450

Time (sec)

Active page cache Inactive page cache
Active anonymous page Inactive anonymous page

Searching

Video change Termination

M
em

or
y

(M
B

)

0

100

200
300
400
500
600

0 50 100 150 200 250 300 350

Time (sec)

Active page cache Inactive page cache
Active anonymous page Inactive anonymous page

Termination

Streaming

M
em

or
y

(M
B

)

(c)

0

200

400

600

800

1,000

1,200

1,400

1,600

0 50 100 150 200 250 300 350 400 450
Time (sec)

Termination

Loading data

M
em

or
y

(M
B

)

Level up

Active page cache Inactive page cache
Active anonymous page Inactive anonymous page
Free page

(d)

(b)

case of the video playback workload, we played 1,080p high-
definition videos using the XBMC player [21], which is a
media center platform of the Xbox game player. In the case of
the video streaming workload, we opened a web browser and
played arbitrary videos from YouTube [22]. In the case of the
web browsing workload, we opened a web browser and
searched arbitrary keywords. In the case of the online gaming
workload, we played Nexuiz [23], which is a high-quality FPS
game. All experiments were performed on a Linux-based
system (see Section IV for the detailed description of the
environment).

To analyze these workloads accurately, we measured
memory usage, including active page cache, inactive page
cache, active anonymous page, inactive anonymous page, and
free page, from the OS performance statistics each second.
Page cache acts as a transparent cache for disk-backed pages,
and it is kept in the main memory for fast access. Anonymous
page, which does not map a file on the disk, is usually used for
the process’s stack or heap area. The OS categorizes the pages
in use into two lists: the active list and the inactive list. Pages on
the active list are considered hot data and are not available for
eviction. On the other hand, pages on the inactive list are
considered cold data and can be evicted.

Figure 1 shows the memory usage pattern of each workload.
As shown in Fig. 1(a), the video playback workload increases
the active anonymous page at the beginning of the playback for
running the XBMC player. Until the free memory is exhausted,
the inactive page cache then continues to increase. This is
because the OS caches as much data from the disk as possible
to minimize slow disk I/O operations. Figure 1(b) shows the

memory usage pattern of the video streaming workload. We
found that the active anonymous page increased during
streaming or changing video content due to the buffered data.
In the case of the web browsing workload, as shown in
Fig. 1(c), the active anonymous page increased whenever we
tried to search a new keyword. Figure 1(d) shows the memory
usage pattern of the online game workload. A large amount of
memory is required at the beginning of loading the data. After
all data is loaded, extra memory is required only when the
stage steps up to the next level.

In summary, the video playback and online game workloads
continuously spend the memory resource during the entire
playing duration. On the other hand, the video streaming and
web browsing workloads require the memory resource in
accordance with the user requests.

2. Semantic Gap in Virtualized Smart TV Systems

To verify the problem of the semantic gap in the virtualized
Smart TV systems, we played the video and online game
simultaneously in both a native and a virtualized Smart TV
system. In the experiments, the memory allocation for each
VM is configured as 512 MB of 2 GB physical memory.
Figure 2(a) shows the memory usage pattern in the native
Smart TV system. When we played the video, the OS started to
cache as much data as possible. As a result, the inactive page
cache, which is regarded as less likely to be reused, rapidly
increased (Fig. 1(a)). The reason for the memory usage pattern
of the inactive page cache is that the video playback workload
reads data sequentially and the data is never accessed again.

744 Junghoon Kim et al. ETRI Journal, Volume 36, Number 5, October 2014
http://dx.doi.org/10.4218/etrij.14.2214.0038

Fig. 2. Problem of memory resource management in virtualized Smart TV system: (a) native system and (b) virtualized system.

0

200

400

600

800

1,000

1,200

1,400

0 100 200 300 400 500 600 700 800 900

Time (sec)

Active page cache Inactive page cache
Active anonymous page Inactive anonymous page
Swap page

Video playback
Online game

M
em

or
y

(M
B

)

(a)

0

200

400

600

800

1,000

0 100 200 300 400 500 600 700

Time (sec)

(b)

M
em

or
y

(M
B

)

Host inactive page cache VM1 inactive page cache
Host active anomynous page VM2 swap page

VM1 start VM2 start

Then, when we played the online game, the OS reclaimed the
inactive page cache efficiently to allocate the anonymous page
for the online game workload. Thus, expensive memory
swapping did not occur.

We performed the same experiment in the virtualized Smart
TV system, as shown in Fig. 2(b). The video playback
workload runs in VM1, and the online game workload runs in
VM2. In the virtualized Smart TV system, the VMM suffers
from lack of runtime information of VMs, called the semantic
gap. Thus, when VM2 started playing the online game, the
VMM could not reclaim the inactive page cache of VM1 and
incurred expensive memory swapping by up to 300 MB in
VM2 as a result. Note that if the VMM efficiently reclaimed
more than 100 MB of the inactive page cache from VM1, then
we could minimize memory swapping in advance. When there
are few VMs that heavily use the inactive page cache, this
problem becomes more critical. This result shows that dynamic
memory balancing is essential for virtualized Smart TV
systems.

III. System Design

In this section, we first describe the overall architecture of
our system. We then describe the three design issues of our
mechanism: (a) monitoring the memory usage patterns of VMs
with negligible overhead regardless of the characteristics of
workloads, (b) a technique for predicting the memory demand
of each VM, and (c) dynamic memory balancing based on the
results of the prediction.

1. System Overview

The proposed mechanism consists of three parts, as shown in
Fig. 3. First, a monitor driver collects the memory usage
pattern of a VM from the OS performance statistics and
periodically updates it to a shared buffer. Second, whenever
new information is updated, a predictor calculates δ and R,
which represent the amount of required and reclaimable

Fig. 3. System architecture.

Memory usage
patterns of VMs

Virtual machine A

Video player

Monitor
driver

Balloon
driver

Virtual machine B

Web browser

Monitor
driver

Balloon
driver

Virtual machine C

3D game

Monitor
driver

Balloon
driver

VMM

Predictor Balancer

VM A

R

VM B

R

VM C

R

Update the memory usage patterns of VMs
Predict the amount of required and reclaimable memory per VM

Inflate or deflate the balloon to change the memory
allocation of a VM

memory per VM, respectively. Finally, when the VMM
decides to rebalance the memory allocation among VMs, the
VMM uses the ballooning technique [12]; a balancer inflates or
deflates the balloon in a VM to change the memory allocation
of the VM. Further detailed design of our mechanism is as
follows.

2. Monitoring Memory Usage Patterns of VMs

As shown in the previous section, the memory usage patterns,
such as the amount of page cache, anonymous pages, and
swap-out pages, differ somewhat from workloads. However,
memory management in the VMM is fundamentally limited
due to the semantic gap between the VMM and the VM. The
VMM considers all the VM memory as anonymous pages.
Therefore, the VMM cannot make efficient decisions to adjust
memory allocation in VMs and hence incurs expensive
memory swapping in virtualized Smart TV systems. In
previous studies, attempts have been made to estimate a
working set size of each VM within a VMM by intercepting
memory access [10]–[12] or tracing the buffer cache eviction

ETRI Journal, Volume 36, Number 5, October 2014 Junghoon Kim et al. 745
http://dx.doi.org/10.4218/etrij.14.2214.0038

[13]–[14] so as to accurately balance the memory allocation.
However, whenever this operation is triggered, the mode
switching between the VM and the VMM causes a large
overhead. In addition, the estimated working set size is not
completely accurate.

We propose an efficient technique for monitoring the
memory usage patterns of VMs. Instead of estimating the
working set size of VMs, the VMM obtains the memory usage
patterns of VMs through a monitor driver interface. The
monitor driver runs in a guest kernel for posting this
information periodically. It does not require modification of the
guest kernel because the monitor driver is a typical loadable
driver. The posted information includes the amount of active
anonymous pages, active page cache, inactive page cache, free
pages, and swap-out pages. The amount of active anonymous
pages and active page cache indicates the memory actively in
use, such as the working set size. Other information is used for
predicting the memory demands and rebalancing the memory
allocation among VMs. By using OS performance statistics in
the VM, the VMM can obtain accurate information with
negligible overhead regardless of the working set size and
memory access pattern of workloads.

3. Prediction of Memory Demand per VM

To dynamically balance the memory allocation among VMs,
the VMM needs to determine the working set size per VM.
The VMM already knows the amount of memory actively in
use (as described in Section III-2). However, to prevent
expensive memory swapping in advance, the VMM needs to
estimate the future memory demand.

To do this, we propose a novel technique that predicts the
memory demand of each VM based on the exponentially-
weighted moving average [20]. We define δ as the memory
demand, whether or not each VM will require more memory.
When updating the memory usage pattern of VMi at the t-th
interval, the predictor calculates t

i as follows:

 ,t t t t
i i i iM p a s      (1)

1(1) if 1,

if 1,

t t
i it

i t
i

tM

M t

  


     





 (2)

where t
iM is the variation of required memory in VMi at the

t-th interval (compared with the previous interval),  is a
constant, and 1t

i
 is the cumulative memory demand of VMi

up to the previous interval. Summing ,t
ip ,t

ia and t
is

(that is, summing the variation of the active page cache, active
anonymous pages, and swap-out pages in VMi, respectively)
gives .t

iM We show how the predictor behaves under
different  in Section IV-1. Also, we define R as the amount of

reclaimable memory in the VM. The predictor calculates t
iR

at each interval as follows:

 0.1 ,t t t t
i i i iR l f T   (3)

where ,t
il ,t

if and t
iT represent the amount of inactive page

cache, free pages, and total memory of VMi at the t-th interval,
respectively. We consider that 10% of total memory in a VM is
not immediately reclaimable because most OSs, such as Linux,
BSD Unix, and Windows, maintain a minimum amount of free
memory to handle sudden memory allocation requests [12].

4. Dynamic Memory Balancing

Based on the results of prediction, the VMM balances the
memory allocation among VMs dynamically. A balancer
checks the δ and R of each VM at every interval. When the
balancer detects VMk, of which t

k is larger than t
kR , the

VMM decides to balance the memory allocation among VMs
because there is a possibility of memory swapping. To prevent
swap-out operations, the VMM asks the other VMs to return
their reclaimable memory to the VMM. If the balancer detects
more than two VMs, of which t

k is larger than t
kR , then the

VMM serves memory resource to each VM in random order.
This policy can be easily extended by the QoS requirements
of the VMs (for example, the service level agreement).

1
1()

otherwise

if () ,

.

t t
t t t ti i
k j j kn t tt

j ji j

t t
i

j

i

nR
R

RS

R


  









   














 (4)

Equation (4) represents a reclaiming formula. The amount of
reclaimed memory from VMi to the VMM at the t-th interval is
represented by t

iS . Let there be n VMs that have reclaimable
memory (that is, t

iR is greater than t
i). In this case, it is

possible to reclaim the difference between t
iR and t

i by the
VMM. If the sum of the differences is larger than t

k , then the
VMM reclaims the memory proportionally to the difference of

Table 1. Description of variables.

Variable Description

t
iM Variation of required memory in VMi at the t-th interval

t
i Predicted memory demand in VMi at the t-th interval

t
iR Amount of reclaimable memory in VMi at the t-th interval

t
iS

Amount of reclaimed memory from VMi to the VMM at the
t-th interval

746 Junghoon Kim et al. ETRI Journal, Volume 36, Number 5, October 2014
http://dx.doi.org/10.4218/etrij.14.2214.0038

each VM. Otherwise, only the sum of differences is reclaimed by
the VMM. Table 1 shows a summary of the variables used in our
mechanism.

IV. Evaluation

Our system is implemented using the KVM [24] VMM.
Linux kernel 3.7.10 is used for guest and host OSs. In our
prototype implementation, the memory usage updating interval
is set to one second. All experiments were performed on a
system with a 2.8 GHz Intel Core i7 processor and 2 GB of
physical memory.

In this section, we show the evaluation results of our
mechanism. First, we show experimental results of the
proposed technique for predicting the memory demand of each
VM. We then evaluate the overhead of our mechanism
compared to prior work. Lastly, we evaluate the effectiveness
of memory balancing through various workloads.

1. Memory Demand Prediction

Figures 4 and 5 show the experimental results of our
prediction technique measured using the web browsing and
online game workloads, respectively. We compare the
predicted memory demand with an actual memory demand,
changing the value of ; a constant used in the prediction. In the
prediction technique, the more the value of  increases, the
more t

iM , which is the variation of required memory at the
t-th interval, is reflected. On the contrary, the more the value of
 decreases, the more 1,t

i
 which is the cumulative memory

demand, is closely reflected.
When the value of  is 0.25, as shown in Figs. 4(a) and 5(a),

our prediction technique passively reflects the recent variation
of required memory; thus, the risk of memory swapping is high.
Meanwhile, the more the value of  increases, the more the
prediction technique reflects the recent variation of required
memory; thus, this decreases the risk of memory swapping.
Figures 4(d) and 5(d) present the most aggressive policy for
preventing expensive memory swapping. However, the
memory resource is wasted in a VM whose actual memory
demand changes frequently and whose gap between minimum
and maximum memory demand is high. In addition, when few
VMs show this memory demand pattern, the VMM balances
the memory allocation among VMs unnecessarily. Therefore,
we set 0.75 as the value of  in our prototype implementation.

2. System Overhead

For our mechanism to be practical in virtualized Smart TV
systems, its overhead should be minimal, regardless of the
characteristics of workloads. In the experiments, we use the
SPEC CPU 2000 [25] benchmark suite for comparing the
performance overhead with previous studies. To evaluate the
monitoring overhead of our mechanism, we measure the
execution time of SPEC 2000 workloads with only the monitor
driver and predictor enabled.

As shown in Table 2, the average overhead of our system is
negligible: 0.05% for SPEC 2000, compared with 2.13% in
Zhao and others’ method [10] and 0.67% in VMMB [11].
More importantly, all measured overheads of SPEC 2000

Fig. 4. Memory demand prediction of web browsing workload: (a)  = 0.25, (b)  = 0.5, (c)  = 0.75, and (d)  = 1.

–60

–40

–20

0

20

40

60

80

100

50 100 150 200 250 300 350

Time (sec)

Actual memory demand

Predicted memory demand ( = 0.25)

(a)

M
em

or
y

de
m

an
d

(M
B

)

50 100 150 200 250 300 350

Time (sec)
–60

–40

–20

0

20

40

60

80

100

M
em

or
y

de
m

an
d

(M
B

)

(b)

Actual memory demand

Predicted memory demand ( = 0.5)

50 100 150 200 250 300 350

Time (sec)
–60

–40

–20

0

20

40

60

80

100

M
em

or
y

de
m

an
d

(M
B

)

(c)

Actual memory demand

Predicted memory demand ( = 0.75)

50 100 150 200 250 300 350

Time (sec)
–60

–40

–20

0

20

40

60

80

100

M
em

or
y

de
m

an
d

(M
B

)

Actual memory demand

Predicted memory demand ( = 1)

(d)

ETRI Journal, Volume 36, Number 5, October 2014 Junghoon Kim et al. 747
http://dx.doi.org/10.4218/etrij.14.2214.0038

Fig. 5. Memory demand prediction of online game workload: (a)  = 0.25, (b)  = 0.5, (c)  = 0.75, and (d)  = 1.

–260

–200

–140

–80

–20

40

100

160

50 100 150 200 250 300 350 400 450

Time (sec)

(a)

M
em

or
y

de
m

an
d

(M
B

)

Actual memory demand

Predicted memory demand ( = 0.25)

50 100 150 200 250 300 350 400 450

–260

–200

–140

–80

–20

40

100

160

M
em

or
y

de
m

an
d

(M
B

)

Time (sec)

(b)

Actual memory demand

Predicted memory demand ( = 0.5)

50 100 150 200 250 300 350 400 450

–260

–200

–140

–80

–20

40

100

160

M
em

or
y

de
m

an
d

(M
B

)

Time (sec)

(c)

Actual memory demand

Predicted memory demand ( = 0.75)

50 100 150 200 250 300 350 400 450

–260

–200

–140

–80

–20

40

100

160

M
em

or
y

de
m

an
d

(M
B

)

Time (sec)

(d)

Actual memory demand

Predicted memory demand ( = 1)

Table 2. Monitoring overhead of SPEC 2000 workloads.

Workload Monitoring overhead (%)

164.gzip 0.05

175.vpr 0.06

176.gcc 0.05

181.mcf 0.04

186.crafty 0.07

197.parser 0.05

252.eon 0.06

253.perlbmk 0.05

254.gap 0.05

255.vortex 0.05

256.bzip2 0.06

300.twolf 0.06

Average 0.05

workloads are equal within the margin of error because our
mechanism is not affected by the working set size and memory
access pattern of the workloads. For example, the overhead of
a memory intensive workload such as 181.mcf is 0.04% in our
mechanism. On the contrary, the runtime overhead of Zhao and
others’s method [10] and VMMB [11] are not negligible, and
are as much as 24% and 1.65%, respectively. When there are
few VMs running a workload with a large working set, the
monitoring overhead becomes more critical. This result shows
that our mechanism effectively obtains memory usage
information of various workloads.

Fig. 6. Performance of workloads in VM1.

0

5

10

15

20

25

400.
perlbench

403.gcc 433.milc 456.
hmmer

462.
libquantum

464.
h246ref

471.
omnetpp

Online
game

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

Baseline Best case Balanced

3. Effectiveness of Memory Balancing

We evaluate how efficiently our mechanism balances the
memory allocation among VMs and how this impacts the
overall performance of a virtualized Smart TV system. We
measure the performance of VM1, which runs selected
workloads in the SPEC CPU 2006 [26] benchmark suite, and
the online game for realistic workload, while VM2 and VM3
run the video playback and the web browsing workloads,
respectively, in the background.

Figure 6 shows the performance of workloads in VM1.
Baseline is the performance through static partitioning that
allocates 512 MB of memory for each. Best case is the
performance when we run a VM with 1,536 MB of memory.
This represents the ideal performance, because no CPU and
cache contentions occur, and sufficient memory is provided for
preventing memory swapping. Balanced is the performance
through our balancing mechanism. In the experimental results,
the performance of workloads such as 400.perlbench, 403.gcc,
433.milc, and the online game are boosted by up to 18.28 times

748 Junghoon Kim et al. ETRI Journal, Volume 36, Number 5, October 2014
http://dx.doi.org/10.4218/etrij.14.2214.0038

Fig. 7. Representative results of variation of allocated memory
among VMs: (a) 400.perlbench, (b) 403.gcc, (c) 433.milc,
and (d) 464.h264ref.

0

200

400

600

800

1,000

0 100 200 300 400 500 600
Time (sec)

VM1 : 400.perlbench
VM2 : video
VM3 : web

M
em

or
y

(M
B

)

(a)

0 100 200 300 400
Time (sec)

0

200

400

600

800

1,000

M
em

or
y

(M
B

)

VM1 : 400.gcc
VM2 : video
VM3 : web

(b)

0 100 200 300 400 500 600

Time (sec)

0

200

400

600

800

1,000

M
em

or
y

(M
B

)

VM1 : 400.milc
VM2 : video
VM3 : web

(c)

0 100 200 300 400 500 600 700

Time (sec)

0

200

400

600

800

1,000

M
em

or
y

(M
B

)

VM1 : 464.h264ref
VM2 : video
VM3 : web

(d)

Table 3. Reduced amount of memory swapping.

Category Workload Reduced amount (%)

400.perlbench 83.89

403.gcc 97.03

433.milc 99.73

456.hmmer -

462.libquantum -

464.h264ref -

471.omnetpp -

VM1

Online game 88.93

VM2 Video playback -

VM3 Web browsing -

compared with Baseline. Among these workloads, the
performance gains of 403.gcc, 433.milc, and the online game
are close to Best case. On the other hand, 400.perlbench
shows relatively less performance improvement. In the case of
workloads such as 456.hmmer, 462.libquantum, 464.h264ref,
and 471.omnetpp, no significant difference is observed in the
performance among Baseline, Best case, and Balanced.

To analyze the experimental results, we measure the
allocated memory among VMs over time. Figure 7 shows the
representative results of the variation of allocated memory
among VMs. As shown in Fig. 7(a), Fig. 7(b), and Fig. 7(c), the
VMM gives more memory to VM1, which runs the memory
intensive workloads with a large working set. This is because
our mechanism predicts the memory demand of each VM
accurately and balances the memory among VMs dynamically.
On the contrary, no memory rebalancing is observed in
Fig. 7(d). This is because our mechanism only balances the
memory allocation on demand when there is a possibility of
memory swapping. This helps to reduce memory thrashing,
whereby unnecessary balancing arises from a workload in
which the actual memory demand increases and decreases
frequently.

To further analyze the experimental results, we measure the
amount of memory swapping in each VM. Table 3 shows the
reduced amount of memory swapping, compared with
Baseline. We found that our mechanism prevents expensive
memory swapping by up to 99.73% by giving more memory
to VM1. Also, we found that no memory swapping occurs in
VM2 and VM3. This shows that our mechanism efficiently
predicts the required and reclaimable memory of VMs and that
the VMM reclaims the memory from VM2 and VM3 without
performance degradation. In the case of 400.perlbench, the
reduced amount of memory swapping is relatively small. Thus,

ETRI Journal, Volume 36, Number 5, October 2014 Junghoon Kim et al. 749
http://dx.doi.org/10.4218/etrij.14.2214.0038

relatively less performance improvement is shown in Fig. 6.
This is because little memory resource is required with a
repeated pattern, as shown in Fig. 7(a). If we increase the value
of  by more than 0.75 in our prototype implementation, then the
prediction technique reflects the recent variation of the required
memory more aggressively and the performance improvement of
400.perlbench will be better. However, this may lead to
performance degradation in other VMs due to overestimation.
Thus, when determining the value of , the administrator should
consider the QoS requirements of individual VMs that have
different importance factors.

V. Related Work

Our mechanism can greatly reduce the amount of memory
swapping by predicting the memory demand of each VM
efficiently and rebalancing the memory allocation among VMs
dynamically. In this regard, this section briefly presents the
existing technologies that are most closely related to our work
and compares them to our mechanism.

First, Waldspurger [12] proposed a statistical sampling
approach to estimate the working set size of a VM. During a
configurable sample period, a small number of randomly
selected pages are monitored, whether or not they are accessed.
At the end of the sample period, the fraction of accessed pages
over selected pages is considered as the VM working set.
However, a working set size larger than that currently allocated
memory to a VM cannot be estimated. If the VM begins to
thrash, the sampling technique simply reports the working set
size, which is 100% of the currently allocated memory to the
VM. Thus, as in this case, a trial and error approach is required
for VMM to determine the working set size. To do this, the
VMM repeatedly gives more memory to the VM until it drops
below 100%. However, if physical memory is not available,
even this trial and error approach will fail. Thus, a brute-force
approach may be needed in this scenario. In addition, as the
number of sampling pages increases for the high accuracy of
estimation, the monitoring overhead linearly increases. The
sampling rate is shown in the tradeoff between overhead and
accuracy. In contrast, we exploit a symbiotic approach to
predict the future memory demand of each VM. Thus, our
mechanism can estimate the working set size larger than the
currently allocated memory to the VM with negligible
monitoring overhead.

Second, the ghost buffer technique [13]–[14], [27]–[28], has
been proposed to predict a page miss ratio under a different
memory resource provisioning. Geiger [13] proposed a
technique that monitors the buffer cache in virtualized
environments. This technique monitors the buffer cache
eviction and promotion by intercepting all I/O operations at the

VMM level. Through this, the technique can predict the page
miss ratio and determine appropriate VM memory allocation.
However, it cannot estimate the working set of a VM smaller
than its current memory allocation because, as in this case, it
does not incur the buffer cache eviction. To cope with such a
limitation, Lu and Shen [14] proposed a technique whereby the
VMM takes over the management for part of the VM memory;
thus, all accesses can be transparently traced by the VMM.
Through this, the growth and the shrinkage of memory
allocation can be determined. However, this technique cannot
be used for an OS without source code, since it requires
modification of the guest kernel. In contrast, our mechanism
can estimate the working set of a VM smaller than its current
memory allocation and efficiently reclaims the VM memory
when necessary. Furthermore, our mechanism does not require
modification of the guest kernel because the monitor driver is a
typical loadable driver.

Third, Zhao and others [10] proposed an LRU histogram–
based [15] approach for estimating the working set size of each
VM. This approach divides the VM memory into two sets: a
hot page set and a cold page set. Then, only the cold page set is
monitored for reducing runtime overhead. However, a
workload that heavily accesses the memory causes a large
monitoring overhead due to frequent histogram updates. To
address this problem, VMMB [11] proposed a weighted red–
black tree and an adaptive resizing technique. However, it can
still run the risk of increasing the monitoring overhead in
accordance with the memory access pattern of workloads. Also,
this technique incurs expensive mode switching between the
VM and the VMM whenever the VM memory accesses. In
contrast, we fully exploit OS performance statistics to obtain
the memory usage patterns of VMs. Thus, our mechanism has
negligible runtime overhead regardless of the characteristics of
workloads.

Lastly, Salomie and others [29] proposed a technique, called
application-level ballooning (ALB), for rebalancing the
memory allocation among a collection of applications that
manage their own memory, such as databases and language
runtimes. ALB coordinates application, guest OS, and VMM
for optimizing the use of the memory pool to maximize
performance. This approach differs from ours in that ALB can
only be used for specific applications that manage the memory
resource themselves. Tesseract [30] and VSWAPPER [31]
explored the behavior of uncooperative memory swapping,
which is considered a necessary evil in the virtualized
environments, and proposed their solutions. Tesseract [30]
directly addresses the double-paging problem, which occurs
when the VM attempts to page out memory that has previously
been swapped out by the VMM, and VSWAPPER [31]
describes some more cases. We view their solutions as

750 Junghoon Kim et al. ETRI Journal, Volume 36, Number 5, October 2014
http://dx.doi.org/10.4218/etrij.14.2214.0038

complementary to our mechanism.

VI. Conclusion

In the near future, Smart TV systems will become ubiquitous
in home environments through the introduction of cloud
services based on virtualization technologies. To achieve this,
efficient memory resource management is a key success factor
in virtualized Smart TV systems. In this paper, we proposed a
novel mechanism to dynamically balance the memory
allocation among VMs in a virtualized Smart TV system by
reflecting the characteristics of Smart TV workloads. The
VMM obtains the memory usage patterns from VMs with
negligible overhead and predicts the memory demand of each
VM for preventing memory swapping in advance. Then, based
on the predicted memory demands, the VMM rebalances the
memory allocation among the VMs. Experimental results
show that our mechanism is a practical solution for dynamic
memory balancing in next-generation Smart TV systems. As
future work, we plan to extend our mechanism for integration
with QoS requirements of individual VMs that have different
importance factors.

References

[1] M.A. Brahmia, A. Abouaissa, and P. Lorenz, “Improving IPTV

Forwarding Mechanism in IEEE 802.16j MMR Networks Based

on Aggregation,” ETRI J., vol. 35, no. 2, Apr. 2013, pp. 234–244.

[2] M.R. Cabrer et al., “Controlling the Smart Home from TV,” IEEE

Trans. Consum. Electron., vol. 52, no. 2, May 2006, pp. 421–429.

[3] K.S. Cho, H.W. Lee, and W. Ryu, “Service Trends and Prospect

on Smart TV,” Electron. Telecommun. Trends, vol. 26, no. 4, Aug.

2011, pp. 1–13.

[4] ARM Architecture Group, ARM Cortex-A15 MPCore Processor,

ARM, 2011. Accessed Jan. 25, 2014. http://infocenter.arm.com/

help/index.jsp?topic=/com.arm.doc.ddi0438i/CHDCHAED.html

[5] J.-Y. Hwnag et al., “Xen on ARM: System Virtualization Using

Xen Hypervisor for ARM-Based Secure Mobile Phones,” IEEE

Consum. Commun. Netw. Conf., Las Vegas, NV, USA, Jan. 10–

12, 2008, pp. 257–261.

[6] G. Heiser, “Hypervisor for Consumer Electronics,” IEEE Consum.

Commun. Netw. Conf., Las Vegas, NV, USA, Jan. 10–13, 2009,

pp. 1–5.

[7] K. Barr et al., “The VMware Mobile Virtualization Platform: Is

that a Hypervisor in Your Pocket?,” ACM SIGOPS Operating

Syst. Rev., vol. 44, no. 4, Dec. 2010, pp. 124–135.

[8] P. Varanasi and G. Heiser, “Hardware-Supported Virtualization on

ARM,” presented at the Proc. Asia-Pacific Workshop Syst.,

Shanghai, China, July 11–12, 2011.

[9] J. Perello, P. Pavon-Marino, and S. Spadaro, “Cost-Efficient

Virtual Optical Network Embedding for Manageable Inter-Data-

Center Connectivity,” ETRI J., vol. 35, no. 1, Feb. 2013, pp. 142–

145.

[10] W. Zhao, Z. Wang, and Y. Luo, “Dynamic Memory Balancing for

Virtual Machines,” ACM SIGOPS Operating Syst. Rev., vol. 43,

no. 3, July 2009, pp. 37–47.

[11] C. Min et al., “VMMB: Virtual Machine Memory Balancing for

Unmodified Operating Systems,” J. Grid Comput., vol. 10, no. 1,

Mar. 2012, pp. 69–84.

[12] C.A. Waldspurger, “Memory Resource Management in VMware

ESX Server,” ACM SIGOPS Operating Syst. Rev., vol. 36, no.

SI, 2002, pp. 181–194.

[13] S.T. Jones, A.C. Arpaci-Dusseau, and R.H. Arpaci-Dusseau,

“Geiger: Monitoring the Buffer Cache in a Virtual Machine

Environment,” ACM SIGOPS Operating Syst. Rev., vol. 40, no. 5,

Dec. 2006, pp. 14–24.

[14] P. Lu and K. Shen, “Virtual Machine Memory Access Tracing

with Hypervisor Exclusive Cache,” USENIX Annual Techn.

Conf., Santa Clara, CA, USA, June 17–22, 2007, pp. 29–43.

[15] R.L. Mattson et al., “Evaluation Techniques for Storage

Hierarchies,” IBM Syst. J., vol. 9, no. 2, June 1970, pp. 78–117.

[16] K. Adams and O. Agesen, “A Comparison of Software and

Hardware Techniques for x86 Virtualization,” ACM SIGOPS

Operating Syst. Rev., vol. 40, no. 5, Dec. 2006, pp. 2–13.

[17] A. Landau, M. Ben-Yehuda, and A. Gordon, “SplitX: Split

Guest/Hypervisor Execution on Multicore,” USENIX Workshop

I/O Virtualization, Portland, OR, USA, June 14–17, 2011, pp. 1–7.

[18] O. Agesen et al., “Software Techniques for Avoiding Hardware

Virtualization Exits,” USENIX Annual Techn. Conf., Boston, MA,

USA, June 13–15, 2012, pp. 373–386.

[19] N. Har’El et al., “Efficient and Scalable Paravirtual I/O System,”

USENIX Annual Techn. Conf., San Jose, CA, USA, June 26–28,

2013, pp. 231–242.

[20] J.S. Hunter, “The Exponentially Weighted Moving Average,” J.

Quality Technol., vol. 18, no. 4, Oct. 1986, pp. 203–207.

[21] XBMC Media Center. Accessed Jan. 25, 2014. http://xbmc.org

[22] YouTube. Accessed Jan. 25, 2014. http://www.youtube.com

[23] Nexuiz. Accessed Jan. 25, 2014. http://www.nexuiz.com

[24] A. Kivity et al., “KVM: The Linux Virtual Machine Monitor,”

Linux Symp., Ottawa, Canada, June 27–30, 2007, pp. 225–230.

[25] SPEC CPU2000. Accessed Jane 25, 2014. http://www.spec.org/

cpu2000/

[26] SPEC CPU2006. Accessed Jan. 25, 2014. http://www.spec.org/

cpu2006/

[27] T.M. Wong and J. Wilkes, “My Cache or Yours? Making Storage

More Exclusive,” USENIX Annual Techn. Conf., Monterey, CA,

USA, June 10–15, 2002, pp. 161–175.

[28] Z. Chen, Y. Zhou, and K. Li, “Eviction-Based Cache Placement

for Storage Caches,” USENIX Annual Techn. Conf., San Antonio,

TX, USA, June 9–14, 2003, pp. 269–282.

ETRI Journal, Volume 36, Number 5, October 2014 Junghoon Kim et al. 751
http://dx.doi.org/10.4218/etrij.14.2214.0038

[29] T.-I. Salomie et al., “Application-Level Ballooning for Efficient

Server Consolidation,” European Conf. Comput. Syst., Prague,

Czech Republic, Apr. 14–17, 2013, pp. 337–350.

[30] K. Arya, Y. Baskakov, and A. Garthwaite, “Tesseract: Reconciling

Guest I/O and Hypervisor Swapping in a VM,” ACM

SIGPLAN/SIGOPS Conf. Virtual Execution Environments, Salt

Lake City, UT, USA, Mar. 1–2, 2014, pp. 15–28.

[31] N. Amit, D. Tsafrir, and A. Schuster, “VSWAPPER: A Memory

Swapper for Virtualized Environments,” ACM Conf. Archit.

Support Programming Languages Operating Syst., Salt Lake

City, UT, USA, Mar. 1–5, 2014, pp. 349–366.

Junghoon Kim received his BS degree in

computer engineering and his MS degree in

mobile systems engineering from

Sungkyunkwan University, Suwon, Rep. of

Korea, in 2010 and 2012, respectively. He is

currently a PhD candidate in the Department of

IT Convergence at Sungkyunkwan University.

His research interests include storage systems, embedded systems,

virtualization, and operating systems.

Taehun Kim received his BS degree in

computer engineering from Korea Polytechnic

University, Siheung, Rep. of Korea, in 2012 and

his MS degree in electrical and computer

engineering from Sungkyunkwan University,

Suwon, Rep. of Korea, in 2014. Since 2014, he

has been a system engineer at Naver Business

Platform, Seongnam, Rep. of Korea. His research interests include

virtualization, operating systems, and storage systems.

Changwoo Min received his BS and MS

degrees in computer science from Soongsil

University, Seoul, Rep. of Korea, in 1996 and

1998, respectively and his PhD degree in mobile

systems engineering from Sungkyunkwan

University, Suwon, Rep. of Korea, in 2014. From

1998 to 2005, he was a research engineer in the

Ubiquitous Computing Laboratory of IBM, Seoul, Rep. of Korea. From

2005 to 2014, he was a research engineer at Samsung Electronics,

Suwon, Rep. of Korea. Currently, he is a postdoctoral researcher at

Sungkyunkwan University. His research interests include operating

systems, storage systems, virtualization, and runtime systems.

Hyung Kook Jun received his BS degree in

computer science and engineering and his MS

degree in electrical and computer engineering

from Sungkyunkwan University, Suwon, Rep. of

Korea, in 1999 and 2001, respectively. Since

2001, he has been a senior researcher in the

Cyber-Physical Systems (CPS) research team,

Electronics and Telecommunications Research Institute, Daejeon, Rep.

of Korea. His research interests include CPS, embedded systems,

communication middleware, and multimedia systems.

Soo Hyung Lee received his BS and MS

degrees in electronic engineering from Hanyang

University, Seoul, Rep. of Korea, in 1991 and

1993, respectively and his PhD degree in

computer engineering from Chungnam

National University, Daejeon, Rep. of Korea, in

2012. In August 1993, he joined the network

design laboratory of DACOM corporation. Since October 2000, he has

been a principal member of the engineering staff in the Cyber-Physical

Systems (CPS) research team, Electronics and Telecommunications

Research Institute, Daejeon, Rep. of Korea. His research interests

include IT converging systems, CPS, distributed communication, and

network security.

Won-Tae Kim received his BS, MS, and PhD

degrees in electronic engineering from Hanyang

University, Seoul, Rep. of Korea, in 1994, 1996,

and 2000, respectively. He established a venture

company named Rostic Technologies Inc. in

January 2001 and worked as CTO until February

2005. He joined the Electronics and

Telecommunications Research Institute, Daejeon, Rep. of Korea, in

March 2005, and now he is the manager of the Cyber-Physical Systems

(CPS) research section of SW Contents Technology Research Lab. He

has been the chairman of the CPS project group of the

Telecommunication Technology Association since 2011. In addition, he

has been a vice president of the Military SW Research Association at the

Korean Institute of Information Scientists and Engineers since 2011.

Young Ik Eom received his BS, MS, and PhD

degrees in computer science from Seoul National

University, Seoul, Rep. of Korea, in 1983, 1985,

and 1991, respectively. He was a visiting scholar

at the Department of Information and Computer

Science, University of California, Irvine, USA,

from September 2000 to August 2001. Since

1993, he has been a professor at Sungkyunkwan University, Suwon, Rep.

of Korea. His research interests include system software, operating

systems, virtualization, cloud systems, and system securities.

